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RESUMO

A predicéo de links visa prever relacionamentos em uma rede de dados. Uma grande vari-
edade de campos pode se beneficiar dessa tecnologia; por exemplo, a modelagem de ambientes
fisicos através de grafos visando a movimentacdo de robés. Hoje ha dificuldade em se obter um
programa que aplique de forma automatizada todas as etapas necessérias de avaliacdo e recomen-
dacéo de links. Outro ponto negativo no uso de predicdo de links é a baixa eficacia dos preditores
de menor custo computacional. Os algoritmos mais interessantes do ponto de vista de tempo de
execucdo, infelizmente, ainda possuem baixo poder preditivo. Esse relatdrio descreve a cria¢do de
um software automatico que realiza todo o processo de predicao de links de forma transparente ao
usuario, atravées de uma interface de facil utilizacdo. Outra contribuicdo do projeto foi 0 aumento

da capacidade de predicdo dos algoritmos visando tornar sua aplicacdo mais confiavel.

Palavras-chave: Predicdo de Links, Software Automatico de Predicdo de Links, Algoritmo Local

Supervisionado.



ABSTRACT

Link prediction aims at predicting relationships in a network. A variety of fields can ben-
nefit from this tecnology; for instance, physical environments can be modeled by graphs so as to
encode robot navigation. It is now difficult to find a computer program that can automatically run
all steps needed in link evaluation and recommendation. Another difficult point in link prediction
is the low accuracy of predictors with low computational cost. The best algorithms from the point
of view of execution time are, unfortunately, of low predictive power. This report describes an
automated software package that runs the whole prediction link process in a transparente manner,
through an easy-to-use interface. Another contribution of the project was an increase in predicti-

on performance for a predictor with low computational cost.

Keywords: Link Prediction, Automatic Software of Link Prediction, Supervised Local Algori-

thm.
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1. INTRODUCAO

O termo “rede” denota um grupo de objetos que pertencem a uma comunidade interagindo
entre si. Uma rede pode ser descrita como um composto de nds, ou vértices, que representam 0s
objetos, e uma lista de arestas, ou ligacdes, que representam uma relacdo entre nés. Este tipo de
estrutura € representada por um grafo. Ha uma grande variedade de sistemas que sdo modelados
através desta abordagem na natureza, para diferentes fins. No &mbito mecatrénico, ha autores
[Dudek et al. 1991] que utilizam de grafos como uma abstracdo do campo fisico de exploracdo de
robds, onde os vértices sdo pontos de localizagdo e estes caminham através de arestas utilizando-
se de algoritmos de exploracdo. No campo bioldgico, ha exemplos de estudos das propriedades
dindmicas de redes formadas pela interacdo entre proteinas [Li et al. 2004] e modelagem de sis-
temas bioldgicos para se recuperar informacdes [Liao et al. 2003]. Além disso, o estudo de redes
com evolugdo temporal tem atraido atengdo dos cientistas, especialmente as redes sociais, uma
vez que estas sao suficientemente complexas a ponto de permitir o estudo da dindmica dos meca-
nismos que controlam o sistema [Barabasi, Albert-Laszlo et ai. 2002] além das caracteristicas to-
poldgicas e estruturais que regem sua evolucdo [Kossinets, Gueorgi e Watts 2006].

O problema de predicdo de links ja ndo é um conceito estranho para o publico em geral.
Especialmente para os usuarios de sites de redes sociais e de comércio eletrénico, onde 0s usua-
rios se se acostumaram a ver recomendacdo de amigos [Walter, Frank Edward, Stefano Battiston,
e Frank Schweitzer] ou produtos [Sarwar, Badrul, et al. 2000]. Outra aplicacdo interessante é a
previsao de links de sites, onde os autores construiram um previsor de arestas baseado em mode-
los de cadeia de Markov, criados pelo proprio usuario na sua navegacao [Zhu et al. 2002].

Este trabalho descreve um projeto de software na area de predicdo de links: seus objetivos
e a forma de se realizar essa tarefa, tanto em alto nivel, através da sua modelagem e em baixo ni-
vel. Também se realiza um breve estudo dos algoritmos de predigéo local e propde-se uma forma
de se aumentar sua capacidade preditiva. Na Secéo 2 encontra-se a motivagao para o projeto, seus
objetivos, e sua metodologia de desenvolvimento. A Secdo 3 aborda o problema de predicdo de

links, definindo-o formalmente, revisa os principais indices de avaliagdo local e propde uma nova
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forma de se analisar a predicdo baseada nos indices que se mostraram mais efetivos, além de a-
presentar testes e resultados para esta nova proposicdo. Na se¢do 4 expdem-se os detalhes da pro-
gramacdo do software, como a utilizacdo do banco de dados e a modelagem do dominio. Por fim

relatam-se alguns pontos para trabalhos futuros e finaliza-se com a concluséo do projeto.
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2. DESENVOLVIMENTO

2.1 Motivagao

O estudo da predicéo de links esta inserido nos ramos da ciéncia que utilizam grafos para
a modelagem de seus fendbmenos. Um exemplo real do potencial dessa area de pesquisa pode ser
encontrado no estudo das interacdes celulares da levedura; segundo Haiyuan et al. (2008) apenas
vinte por cento destas interacdes foi mapeada, demonstrando que ainda h4 uma grande parcela a
ser descoberta.

Hoje ndo ha, dentre os principais programas que lidam com redes, funcionalidades que
contemplem a predicdo de links. Além disso, dentre as poucas implementacbes de algoritmos
preditores (contidas em biblioetacas do software R), o que ha disponivel sé é acessivel a quem
possui conhecimentos de programacao, devido a sua interface em baixo nivel.

Outro fator que motiva este trabalho € a baixa eficacia dos preditores locais de links. O
trabalho de Zhou e Li (2009), sobre o desempenho de algoritmos que utilizam exclusivamente
informacdes dos vizinhos para a predicao, indica que ha a possibilidade de se melhorar a precisdo
para redes genéricas. De maneira geral, sempre 0s mesmos algoritmos obtém os melhores resulta-
dos, variando entre si de acordo com as propriedades particulares de cada grafo. Quando compa-
rado a taxa de acerto destes, como feito por Liben-Nowell et al. (2007), revela-se que estes predi-
tores preveem diferentes links para as mesmas redes, indicando que ha informacgdes que alguns
frameworks conseguem adquirir enquanto outros ndo. Ou seja, apesar de serem sempre 0S mes-
mos preditores, as informacdes utilizadas por cada um ndo sdo as mesmas, mostrando que ha es-
paco para algum preditor mais genérico extrair todas essas informacdes. Outra forma de se verifi-
car a possibilidade de melhoria do poder preditivo encontra-se no estudo da importancia do peso
das arestas. Demonstrou-se que o desempenho dos algoritmos pode variar de acordo com 0 modo
que estes avaliam o grau de importancia das relacdes, possuindo pontos de maximizacao da efica-

cia dos resultados (LU e Zhou 2011).

14



Além disso, o crescente aumento de artigos relacionados ao problema da predicéo de links
também serviu como motivacional para o projeto. A ferramenta Ngram Viewer do Google, que
realiza buscas de citacbes em livros, indica que o assunto esta em plena ascensao (Figura 1). A
sua atualidade também indica que ha um grande campo a ser estudado, expressando uma oportu-

nidade de descobertas de interesse académico e comercial.

250%
Link Prediction
200%
150%
100%

50%

0%

1994 1996 1998 2000 2002 2004 2006 2008

Figura 1 - Namero de citagfes em livros segundo o Google Ngram Viewer.

Portanto, dois fatores s@o primordiais para a motivacdo deste trabalho; a inexisténcia de
um software de predicdo de links e a baixa eficiéncia dos algoritmos disponiveis. A baixa eficién-
cia dos algoritmos ja foi comprovada em trabalhos anteriores e as divergéncias de resultados de

cada framework indicam que de fato ha oportunidades de melhoria.

2.2-Objetivos
Como objetivos do trabalho tém-se a elaboracdo de um software capaz de solucionar o
problema da predicéo de links automatizadamente e o desenvolvimento de um algoritmo que seja

capaz de obter um desempenho superior aos atualmente propostos.
2.7 Metodologia
Para a andlise do software e sua modelagem utilizaram-se os diagramas UML. O diagrama

de atividades exemplifica o fluxo e as decisdes dinamicas do sistema. Os casos de uso foram usa-
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dos para levantar as funcionalidades que serdo disponibilizadas ao usuario. Utilizou-se um con-
ceito minimalista para esse projeto, visando dar ao usuario & maxima eficiéncia com o menor
numero de funcionalidades. Essa abordagem torna o software mais user-friendly, ou seja, com
maior usabilidade. Em contrapartida tem-se que este acaba apresentando maior nivel de comple-
xidade de codificacdo uma vez que precisa tomar um grande numero de decisdes proprias.

O diagrama de componentes demonstra como foi elaborada a organizacdo dos pacotes do

sistema.
actDiagrama De Atividades)
Dados estao
' 7
Aguardar consistentes: Verificar
Recebimento Tamanho
do Grafo do Grafo
713
Grande Yolume
Persistir os Sim de Dados?
DCados em um &
Banco de
Retornar Dados A
Fredicides a0
Graficamente ou
Textualmente
Manter as
Informacdes
em Memoria
Dredica Tomada de Calcular as
d;eAlrgifas Decisdo de Qual Caracteristicas
Algoritmo Utilizar da Rede

16



Figura 2- Diagrama de Atividades do Programa de Automatizacdo de Predicdo de Links.

A Figura 2 indica o diagrama de atividades do programa completo. Ao iniciar, este deve
esperar 0 usuario importar uma rede persistida na memaoria do computador, em formato especifico
ou direto do banco de dados. O programa faz uma verificacdo para garantir que 0 usuario entrou
com dados consistentes evitando travamentos. Em seguida o software realiza a predi¢do. O soft-
ware calcula o tamanho do grafo, para verificar se ha a possibilidade de se utilizar a memoria do
computador, ou se sera necessario persistir os dados em um banco de dados. Depois o software
caracteriza a rede de acordo com as suas propriedades e seleciona o melhor algoritmo que se apli-
ca aquela configuracdo. O programa predizas arestas, criando os grafos de treinamento e teste,
processando o algoritmo escolhido e fazendo verificacGes de validade do método de acordo com
as métricas de avaliagdo. Finalmente o software retorna as informagdes ao usuério de maneira

gréfica, caso haja poucos dados, ou textual, se estiverem em grande quantidade.
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Calcular indices do
Modelo Proposto

Figura 3 - Diagrama de Casos de Uso do Sistema.

O software desenvolvido apresenta funcionalidades basicas como importar dados, esco-

Iher algoritmo, calcular indice de similaridade, escolher a quantidade de arestas removidas para

calcular o indice AUC e salvar os dados. Cabe ao programa tomar decisfes mais complexas como

exibir o grafo graficamente ou em forma de tabela, qual algoritmo escolher para realizar a predi-

cao e fazer a computacdo dos dados em memoria virtual ou armazenar em disco rigido. Essa a-

bordagem visa criar uma experiéncia positiva ao usuario, uma vez que se constitui em algo util e
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de facil utilizacdo. Espera-se que essas funcionalidades supram as necessidades de quem ndo pos-

sui profundos conhecimentos de tecnologia ou mesmo de predicéo de links.

cmp

Main =
I
i
Vi
Controlador 8]

T
I
I

- | ~
I
I

ye¥ A4 N\
Memoéra 8 | Madulo Matematico g | Visualizagéo 8 |
- - ~
- \ ! ’
e i Vi \ .
Banco de Dados 3 | Volatil = Estratégia 3 | Tabela = Grafico =
L A
Algoritmo 2] Métrica g |

Figura 4 - Diagrama de Componentes do Sistema.

O diagrama de componentes expressa a complexidade exigida ao desenvolvimento do
software. O software foi projetado para desacoplar a automatizacdo de cada componente de sua
implementacdo. Assim este apresenta uma camada acima dos algoritmos, da persisténcia e da vi-

sualizacdo, para realizar a tomada de decisdo deste.
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3. O PROBLEMA DE PREDICAO DE LINKS

3.1 Abordagem Matematica

A abordagem matematica do problema de predi¢do de links foi originalmente formulada
por Liben-Nowell e Kleinberg (2007), onde uma rede social é representada por G(V,E), sendo E o
conjunto de arestas composto por e=(u,v), que representa uma aresta formada entre 0s vértices u e
v. Para grafos que apresentam evolucéo temporal atribuiu-se as arestas marcas temporais (times-
tamp) e separamos a rede em dois periodos de tempo diferentes. Se houver multiplas interac6es
consideram-se arestas paralelas. O subgrafo G(t,t’) representa o grafo G restrito a arestas com
marcas temporais entre t e t’. Na tarefa de predicdo de links nds podemos selecionar um intervalo
de tempo de treinamento [t0,t07] e um intervalo de testes [t1,t1] (onde t0'<t1) para testar a eficacia
do método. A lista de arestas presentes no intervalo de treinamento deve estar presente no interva-
lo de testes.

Outra abordagem foi desenvolvida por LU e Zhou (2011) para grafos estaticos. Sem a ca-
racteristica da evolucdo temporal o intervalo de treinamento deve ser criado removendo os links
aleatoriamente do grafo principal. A lista de links observados E deve ser dividido em dois con-
juntos, o de treinamento, E', que contém os links originais menos os removidos (considerado a
informacao conhecida), e o de prova, E”, contendo somente os links removidos que seréo utiliza-
dos para a predicdo. E possivel observar que E' U E° = E e E' N E” = 0. Os vizinhos de um de-

terminado né sdo denotados por I'(nd) € 0 seu grau |I'(no)|.

3.2 Métricas de Avaliacéo

H& duas formas mais utilizadas para a medi¢do de desempenho dos resultados dos algo-
ritmos de predicdo. Uma € a precisdo, que avalia a razéo entre os valores verdadeiramente positi-
vos e 0s verdadeiramente negativos. A outra € a Receiver Operating Characteristic (ROC), que

avalia graficamente o desempenho sobre a taxa de links verdadeiramente positivos e falsamente
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positivos. Uma métrica mais conveniente que a bidimensional ROC, muito usada na comunidade
académica, € a unidimensional Area Under Curve (AUC) [Hanley and McNeil 1982], que € a area
calculada sob a curva.

Para a construgdo do grafico ROC, cada aresta contida no vetor calculado deve ser compa-
rada com cada aresta do conjunto de prova de arestas. Se a aresta calculada esta contida na lista
de prova, entdo € um exemplo verdadeiramente positivo; se ndo estiver, € um exemplo falsamente
positivo. A lista de links calculados deve ser ordenada em ordem decrescente de contagem, uma
vez que o limite maximo indica a origem do gréafico, como indicado por Fawcett (2004).

A métrica AUC de um algoritmo ranqueia uma instancia positiva aleatoriamente escolhida
com valor maior que uma instancia negativa aleatoriamente escolhida, de acordo com suas pro-
priedades estatisticas (Fawcett 2004). Entdo € esperado que um link removido receba um score
maior que um link que ndo existe. Nesse trabalho utilizou-se a métrica AUC proposta por Hand
and Till (2001). Essa métrica foi utilizada para determinar a eficacia de cada algoritmo.

AUC = (Sg — ng=(no+1) / 2) I (ng=ny),
onde Sy é a soma de todas as posi¢des de todas as arestas positivas na lista decrescente de resulta-
dos de determinado framework. A variavel no € 0 nimero de arestas positivas, ou seja, 0 tamanho
do conjunto de prova, E”, e n; é o nimero de links negativos, ou seja, o tamanho da lista de resul-
tados menos o tamanho do conjunto de prova. Quanto mais distante de 0,5 for o valor do AUC,

mais confiavel a predicdo sera feita em relacdo a pura chance.

3.3 Estado da Arte

Os algoritmos que utilizam a similaridade topolégica como caracteristica para prever links
sdo basicamente separados em dois grupos, os que utilizam o no e sua vizinhanga para a predi¢éo
e 0s que utilizam o caminho do grafo (também descritos como indices de similaridade locais e
globais (Lu et al. 2011)). A grande vantagem dessa abordagem é que os algoritmos sao genéricos
podendo ser aplicados a qualquer tipo de dado em qualquer tipo de dominio, ndo sendo requisita-

das informacgGes sobre as caracteristicas da rede modelada [Al Hasan e Zaki 2011].
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Apesar de o tema predicdo de links ter sido proposto recentemente por Liben-Nowell et al.
(2007), o conceito de predizer relagdes, ou pelo menos propor indices de similaridade em nds, em
redes j& aparecia na literatura em diversos outros formatos. No estudo da evolucéo temporal das
colaboragdes cientificas, Newman (2011) demonstrou que as probabilidades de dois colaborado-
res vierem a se relacionar aumenta de acordo com o nimero de outras colabora¢fes que ambos
tém em comum. Na area de redes na web, apresentam-se trabalhos que propde indices quantitati-
vos para avaliar o quédo similares sdo dois nds a partir de suas relagdes (Adamic e Adar (2003))
além de estudos sobre como lidar com similaridade entre paginas da web (Sergey e Page 1998).

A seguir sdo apresentados as métricas que utilizam as caracteristicas topologicas locais do
grafo para realizar a predicdo. O termo “algoritmo” ¢ usado para se referir a métricas.

A métricas apresentadas a seguir sdo consideradas os mais simples pela comunidade aca-
démica, uma vez que utilizam apenas as informacgdes contidas nos proprios nés e seus vizinhos.
Para cada par de nos é atribuido um valor, chamado de sy, definido como sendo a similaridade
entre 0s nos. Por se tratarem de uma abordagem simpléria geralmente obtém resultados inferiores
a modelos mais complexos, como por exemplo os que utilizam informacdes globais; porém apre-
sentam custo computacional muito mais baixo visto que necessitam de poucas informagoes para a
predicdo. O objetivo principal dos algoritmos é de dar notas mais altas aos n6s mais similares (Lu

et al. 2011).

3.3.1 - Algoritmos e Codigos

Common Neighbors: Proposto por Newman (2001), a ideia por tras dessa métrica é de que quan-
to mais vizinhos dois n6s tem em comum, mais eles estdo propensos a estarem ligados. E notavel
entdo que essa predicdo é aplicada para caminhos de comprimento dois. Esta talvez seja o indice
de similaridade mais simples, uma vez que considera apenas a intersec¢ao entre dois nds para o
calculo do score.

score(x,y) = [[(x) N T(y)

Jaccard Coefficient: Esse indice normaliza o score calculado pelo algoritmo Common Neigh-

bors adicionando uma divisdo pela unido entre os dois nés (Jaccard 1901).
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score(x,y) = [['(x) N I (y)|/ [I'(x) U I'(y)|

Leich-Holme-Newman Index: Esse indice calcula sua similaridade baseado na contagem de vi-

zinhos em comum dividido pela quantidade esperada desses (Leicht, Holme and Newman 2006).

score(x,y) = [I'(x) N T(y)| / [T(x)| X [ (y)|

Salton Index: indice muito similar ao anterior, porém aplicando ao denominador a raiz quadrada
[Salton and McGill 1986].

score(x,y) = [['(x) N I(y)| / VT(x)| X [T (y)|

Serensen Index: Ao invés de penalizar baseado na quantidade esperada de vizinhos em comum,
como o Leich-Holme-Newman, este indice penaliza de acordo com o maior numero possivel de

vizinhos (Sgrensen 1948).

score(x,y) = 2«['(x) N T(y)|/ T(x)| + [T(y)|

Hub Promoted Index: Esse indice promove a adjacéncia a nds centrais, visto que penaliza o

menor grau entre o par de nds levados em consideracdo (Ravasz, Erzsébet et al. 2002).

score(x,y) = [['(x) N T(y)[/ min{[L)], L[}

Hub Depressed Index: Proposto por Zhou et al (2009) indice igual ao anterior porém com de-
nominador revertido.
score(x,y) = [I'(x) N T'(y)| / max{|[T'(x)|, T'(y)I}

Preferential Attachment: Esse algoritmo usa como metrica a esperada quantidade de vizinhos
gue dois nés tem em comum. Usado originalmente em redes evolutivas (Barabasi et al. 1999), foi

adaptado para servir como indice de predigéo.
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score(x,y) = [L(x)| x [['(y)|
Adamic/Adar: O primeiro indice a utilizar a informac&o especifica do vizinho em consideragdo
ao calculo da similaridade. Penaliza os indices com alta quantidade de informacdes pois estes teo-
ricamente sdo 0s menos importantes para futuros relacionamentos (Adamic and Adar 2003).
score(X,y) = X zere nrey 1/10g [I'(2)]
Resource Allocation: Analogo ao indice Adamic/Adar, porém penaliza mais severamente aque-

les com grau mais alto (Zhou et al 2009).

score(X,y) = Yzerqo nriy [L(2)]

3.4 Dados Utilizados

Para o estudo do comportamento dos preditores e as caracteristicas que influenciam no seu
desempenho foram utilizadas trés redes e cinco caracteristicas topoldgicas. Escolheram-se grafos
advindos da area bioldgica devido a facilidade em obté-los. As caracteristicas topoldgicas foram

escolhidas a fim de se capturar os seus diferentes efeitos na predicéo de links.

Tabela 1. Redes e suas Caracteristicas Topoldgicas.

Rede Nos Arestas Densidade Modularidade Clustering
Dolphin 62 159 0,084 0,526 0,303
C. Elegans 297 2148 0,049 0,393 0,308
Disease 1419 2738 0,003 0,874 0,819

A primeira rede Dolphins, representada na Fig. 5, consiste em uma rede social, com ares-

tas sem direcionamento, das associacOes frequentes entre 62 golfinhos em uma comunidade vi-
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vendo em Doubtful Sound, Nova Zelandia [Lusseau et al. 2003]. Este grafico é o menor de todos,
considerando tanto o nimero de arestas quanto de n6s. No entanto, contém a maior densidade e a
segunda maior modularidade, demonstrando que este pode apresentar bons resultados para predi-
tores baseados em contagem de vizinhos em comum. O coeficiente de agrupamento (clustering) é

quase 0 mesmo das outras duas redes.
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Figura 5 - Rede Dolphins.

25



A segunda, representada na Fig. 6, ¢ uma rede dirigida, ponderada representando a rede
neural de C. elegans. Para fins académicos transformou-a em sem dire¢do e sem peso. O nimero
de arestas € alto, comparavel com o ultimo grafo, mas com um nimero muito menor de nos, as-
segurando uma elevada densidade. No entanto, ha poucas comunidades como mostrado pela mo-
dularidade, criando um ambiente interessante para testes, uma vez que todos 0s nos estdo separa-

dos em alguns poucos grupos com elevado grau.
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Figura 6 - Rede C. Elegans.

Mostrada na Fig. 7, a terceira rede € uma rede de genes de doengas e disturbios ligados por
conhecidas associagdes de desordem genética, indicando a origem genética comum de muitas do-
encas. Genes associados com disturbios semelhantes mostram maior probabilidade de interagdes
fisicas entre si, e maior expressdo de similaridade de perfil, apoiando a existéncia de mddulos

funcionais especificos de doencas distintas, conforme explicado por Bastian et al. (2009). O ta-
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manho do grafo é comparavel com aos utilizados em estudos prévios de Liben-Nowell e Klein-
berg (2007) e Zhou et al. (2009). A baixa densidade e alta modularidade indicam que os nds estéo

concentrados em comunidades.

Figura 7 - Rede Disease

28



3.5 Experimentos

Para os experimentos analisou-se o desempenho de algoritmos para responder a questdes
como a forma que a eficécia deles varia de acordo com o nimero de arestas removidas, e dado o
melhor conjunto de links removidos, qual algoritmo fornece o maior nimero de previsées corre-
tas entre os melhores links recomendados. Esta anélise é interessante caso procura-se um nimero
reduzido de arestas previstas porque, como nao se sabe quais serdo as arestas futuras, confia-se
nas ligacbes mais bem avaliadas. Dois tipos de metricas foram utilizados para realizar os testes,
ROC e AUC. AUC foi utilizado para comparar a eficiéncia entre os algoritmos para todos os ni-
veis de ligacOes retiradas e determinar qual € o melhor algoritmo de predicdo em determinada
percentagem de arestas removidas. Todos os valores da AUC foram obtidos a partir de uma mé-
dia aritmética de 100 testes. A comparacao aparece nas tabelas variando-se 0 nimero de arestas
removidas dentre metade até 90% das ligacdes totais. Porém sendo uma medida unidimensional,
AUC ndo é capaz de reportar o comportamento preciso da lista de arestas preditas. Para analisar
quais frameworks ddo as melhores previsdes para os links mais bem avaliados, ou seja, as liga-

¢des com valores mais altos score, devemos analisar a curva ROC.

3.5.1 Resultados

Na Tabela 2 é possivel ver a comparacédo de todos os preditores para a rede Dolphins. Para
a coluna de cinquenta por cento de links removidos, a informacdo ndo é totalmente confiavel,
uma vez que a melhor previsdo € de cerca de quatorze por cento maior do que uma aleatoria, tor-
nando-se desaconselhavel a predicdo nesta configuragdo. Mas € interessante que, mesmo para
baixa quantidade de dados na rede, o desempenho geral continua sendo maior do que 0 puro aca-
so. Certamente ha uma persisténcia de informacdes nesta rede, uma vez que o melhor algoritmo é
0 mesmo para todas as percentagens de ligagOes removidas. Esse comportamento pode ser res-
ponsabilizado a alta densidade, que mantém a caracteristica topoldgica dos n6s mesmo para uma
grande retirada dos links. Percebe-se que o desempenho global aumenta significativamente ao

aumentar os dados para anélise do preditor, isto &, diminuindo a percentagem de ligagdes removi-
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das, conforme esperado. E possivel concluir que para esta rede o algoritmo Hub Depressed apre-
senta o maior poder preditivo, enquanto o Preferential Attachment tem o pior prognostico. Curio-
samente, o Ultimo quase ndo aumenta 0 seu desempenho ao longo do teste, mantendo a menor

eficiéncia de predicéo para todas as colunas.

Tabela 2. Comparacdo do valor AUC para a rede Dolphins para diferentes porcentagens de links retirados.

% of Links Removidos 50% 40% 30% 20% 10%

Common Neighbors 0,637 0,674 0,707 0,732 0,746
Adamic/Adar 0,635 0,673 0,705 0,730 0,747
Salton Index 0,635 0,667 0,693 0,714 0,729
Resource Allocation 0,635 0,673 0,705 0,730 0,746
Jaccards Coefficient 0,636 0,671 0,700 0,720 0,734
Sorensen 0,640 0,675 0,707 0,731 0,748
Hub Depressed 0,640 0,675 0,708 0,732 0,748
Hub Promoted 0,634 0,665 0,690 0,709 0,721
Leich Holme Newman 0,634 0,665 0,689 0,708 0,721
Preferential Attachment 0,583 0,588 0,598 0,606 0,599
Média 0,632 0,664 0,692 0,714 0,726

Na Figura 8 é possivel ver graficamente a superioridade do algoritmo Hub Depressed so-
bre o Preferential Attachment. Surpreendentemente para os primeiros nos Preferential Attachment
tem pior desempenho do que um algoritmo baseado em previsdes aleatorias. Enquanto o valor
AUC s6 pode medir a eficiéncia de todas as previsdes, 0 ROC pode dar-nos qual algoritmo obtém
as melhores previs6es para os melhores links avaliados. Na Figura 9 nota-se uma inversdo da pre-
cisdo da previsdo para as primeiras arestas, por isso se alguem pretende escolher somente as ares-
tas mais bem rangqueadas como as corretas é preferivel usar Preferential Attachment para esta ta-

refa, mesmo que este apresente uma pontuacdo AUC menor que o framework Hub Depressed.
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Figura 9- A curva ROC para a rede Dolphins com 50% dos links removidos. A mesma curva aparece a direita, com a
origem ampliada. A linha preta é o algoritmo Hub Depressed predictor enquanto a verde é o Preferential Attachment.
O algoritmo aleatdrio é definido pela linha vermelha.

A Tabela 3 consiste na mesma analise, mas para a rede de C. elegans. Ha claramente dois
algoritmos proeminentes para esta rede, Adamic / Adar e o Resource Alocation. Embora o pri-
meiro ndo tenha sido o melhor para o grafo anterior (embora tenha chegado perto), no segundo
pode-se ver o potencial do framework. Ha alguns empates técnicos entre os dois algoritmos para
algumas porcentagens especificas de links removidos, mas o maior peso dado aos nos populares
pelo algoritmo Resource Allocation acaba por torna-lo mais eficiente. Como na Tabela 2, é pos-
sivel verificar o fenbmeno de aumentar a precisdo quando se aumenta o nimero de arestas no gra-

fo de treinamento. Tambem é verificavel a inferioridade de previsdo de algoritmos baseados em
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vizinhos comuns para os baseados no conceito Adamic/Adar, gracas as propriedades de agrupa-
mento da rede, como discutido por Zhou et al (2009). Mais uma vez Preferential Attachment é o
indicador com menor perda de precisdo quando removido uma grande quantidade de dados a par-

tir do grafo original, indicando uma propriedade desse indicador.

Tabela 3. Comparacdo do valor AUC para a rede C. Elegans para diferentes porcentagens de links retirados.

% of Links Removidos 50% 40% 30% 20% 10%

Common Neighbors 0,714 0,756 0,787 0,813 0,833
Adamic/Adar 0,726 0,771 0,804 0,830 0,852
Salton Index 0,701 0,731 0,751 0,770 0,788
Resource Allocation 0,726 0,772 0,806 0,832 0,853
Jaccards Coefficient 0,690 0,720 0,737 0,752 0,765
Sorensen 0,691 0,724 0,745 0,765 0,782
Hub Depressed 0,691 0,721 0,740 0,757 0,771
Hub Promoted 0,707 0,740 0,761 0,780 0,796
Leich Holme Newman 0,690 0,708 0,713 0,717 0,718
Preferential Attachment 0,727 0,732 0,735 0,739 0,740
Média 0,708 0,741 0,762 0,781 0,795

As préximas duas figuras mostram como os valores AUC analisados isoladamente podem
ndo ser interessantes. A Figura 10 revela o desempenho abaixo do esperado dos preditores Leich
Holme Newman quando analisado somente as arestas mais bem ranqueadas. Mesmo tendo um
valor AUC (ou seja, a area sobre a curva) maior que 0,5 este ndo obtém um desempenho melhor
do que um algoritmo puramente aleatorio. Essa figura também confirma a superioridade do algo-
ritmo Adamic/ Adar, pois curva deste é acima das outras para quase todo o grafico. Na Figura 11
h& outra revelagdo interessante. De acordo com AUC, a predicdo Preferential Attachment apre-
senta um desempenho melhor do que Adamic / Adar, mas especialmente para as arestas mais bem
avaliadas, Adamic/Adar desempenha muito melhor, indicando superioridade da preciséo a partir

deste ponto de vista.
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Figura 11 - A curva ROC para a rede C. Elegans com 50% dos links removidos. A mesma curva aparece a direita,
com a origem ampliada. A linha azul é o algoritmo Adamic/Adar, a verde é o Preferential Attachment e a amarela é
o Leich Holme Newman. O algoritmo aleatério é definido pela linha vermelha.

Na Tabela 4, apresentam-se os resultados para a rede Disease. Para as duas maiores quan-
tidades de dados disponiveis para realizar a predicdo (ou seja, as duas ultimas colunas) ha um

empate entre dois preditores. Adamic / Adar e Resource Allocation.
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Tabela 4 - Comparacdo do valor AUC para a rede Disease para diferentes porcentagens de links retirados.

% of Links Removidos 50% 40% 30% 20% 10%

Common Neighbors 0,756 0,807 0,845 0,874 0,899
Adamic/Adar 0,757 0,808 0,846 0,875 0,900
Resource Allocation 0,757 0,808 0,846 0,875 0,900
Preferential Attachment 0,661 0,665 0,664 0,663 0,663
Jaccards Coefficient 0,788 0,824 0,852 0,874 0,896
Sorensen 0,766 0,810 0,844 0,872 0,895
Hub Depressed 0,766 0,810 0,844 0,872 0,895
Hub Promoted 0,656 0,688 0,715 0,741 0,766
Leich Holme Newman 0,655 0,687 0,715 0,739 0,764
Salton Index 0,656 0,688 0,715 0,741 0,766

Comparando todas as tabelas, é possivel verificar algumas caracteristicas gerais da previ-
sdo de link. Uma vez que a coluna com o maior nimero de arestas apresenta o indice AUC mais
elevado, fica evidente que quanto maior o nimero de informag6es no grafico melhor € a predicéo.
Além disso, quanto menor for a remocdo de arestas, maior serd o desempenho dos algoritmos.
Assim a anélise do desempenho € fortemente influenciada pelo nimero de arestas removidas,
uma vez que os melhores algoritmos para cada rede variaram para diferentes porcentagens de
links removidos, o que pode levar a conclusdes erradas de desempenho se néo for considerado o
ponto correto de porcentagem de links retirados. A surpresa foi a métrica Preferential Attach-
ment, com a menor variacdo percentual de desempenho, em torno de 2% para todas as redes, 0
que lhe permitiu ser o indicador mais confiavel quando o grafico contém poucas informacdes en-

quanto outros preditores perdem vigorosamente a qualidade de preciséo.
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3.6 Algoritmo Proposto

O algoritmo proposto deve seguir algumas regras para se encaixar no subgrupo de predito-
res de links através de caracteristicas locais. Devido a natureza desse tipo de indice de similarida-
de, o algoritmo n&o deve usar qualquer informacdo estrutural que a rede contenha, como menor
distancia entre dois nds ou a qualidade dos nds baseado em quantas ligacdes este recebe atraves
da rede (Sergey e Page 1998). O framework também deve se basear em dados estritamente per-
tencentes a cada par de nds, como caracteristicas de vértices em comum, por exemplo.

O fato de se utilizar de dados locais ndo impede que o algoritmo proposto baseie-se em
estender a ideia de se utilizar informacdes topoldgicas. Algoritmos probabilisticos, por exemplo,
baseiam sua predicdo em modelos que sdo construidos a partir da abstracdo da estrutura do grafo
(LU e Zhou 2011). Outra forma de se extrair a informacao de redes e adapta-la para uma funcéo é
através de algoritmos supervisionados. Apesar de terem grande potencial preditivo, pois estes
conseguem moldar-se de acordo com as diferentes caracteristicas do grafo, ainda sdo pouco estu-
dados. Ha relatos de benchmark entre os principais algoritmos supervisionados para a predi¢do de
links (Al Hasan et al. 2006), porém ha poucas publicacfes a respeito de frameworks que foram

feitos exclusivamente para o problema de predicédo de links.

3.6.1 Caracteristicas da Predicado Local

Os algoritmos de predicao local sdo basicamente divididos em trés grupos menores: 0s
que utilizam a contagem de nés relacionados entre dois elementos, os que utilizam as caracteristi-
cas do no relacionado e os que utilizam simplesmente as caracteristicas dos nds analisados. O
primeiro grupo, representado pelo algoritmo Common Neighbor e seus variantes, utiliza-se como
indice de similaridade o nimero de nds que s&o comuns aos dois vértices analisados, baseando-se
na ideia de que quanto mais elementos em comuns ha entre dois n6s, maior € a probabilidade des-
tes estarem ligados. O segundo grupo, representado por Adamic/Adar, considera como indice de
similaridade as caracteristicas topoldgicas dos nés em comum. Por fim, o Gltimo grupo ignora

totalmente a informacg&o de relacionamento em comum entre dois nds e considera apenas o0 nime-
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ro de relacionamentos totais entre estes. Neste grupo ha apenas um algoritmo, o Preferential Atta-
chment. Na Figura 12 mostra-se, para os dois principais algoritmos citados, Common Neighbors
e Adamic/Adar, a relacdo de n6s em comum e a valorizacdo destes no célculo do indice de simila-
ridade.

Os dois grupos que demonstraram uma maior capacidade preditiva servirdo de base para o
algoritmo a ser proposto. Dentro destes, emulara-se aqueles algoritmos que apresentaram boa ca-
pacidade preditiva. Segundo os testes propostos, os frameworks Common Neighbors e Ada-
mic/Adar, de modo geral, apresentaram bons resultados. Considerando-se todos os resultados,
esses quando ndo foram os melhores preditores, ficaram proximos a eles. A métrica utilizada por

ambos esta representada na Figura 12.

Indice x NGs - Common Neighbors indice x Nés - Adamic/Adar
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Figura 12 - Comparagcao entre indices de Similaridade dos Algoritmos Common Neighbors e Adamic/Adar.

A ideia por tras do novo algoritmo é que ele contém as propriedades dos dois algoritmos
citados, podendo adaptar-se as caracteristicas do grafo convenientemente. Para que isso fosse
possivel adaptaram-se as propriedades de predicdo dos dois algoritmos em um novo e adiciona-
ram-se constantes para que este fosse capaz de se modificar até alcancar a maxima eficiéncia.

score(x.y) = Yaero nry [1(2)| “A / log [[(z)] "B

Com essa formula nds temos embutido as caracteristicas dos algoritmos do Common Nei-

ghbors e do Adamic Adar. Os expoentes dos termos servem para criar uma férmula adaptavel ao

grafo de modo supervisionado. Percebe-se que o algoritmo proposto simula fielmente o Common
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Neighbors quando ambas constantes valem zero e simula o Adamic Adar quando A vale zero e B

vale um.
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Figura 13- Caracteristica da predi¢do dos quatro algoritmos gerados. No canto superior esquerdo temos o grafico

para A maior que zero e B maior que zero. No canto superior direito temos A maior que zero e B menor. No canto

inferior esquerdo temos A menor que zero e B maior que zero. No canto inferior direito temos A e B menores que
zero.

Analisando-se as caracteristicas de predi¢do para o algoritmo proposto percebe-se que ha
quatro grandes grupos presentes. O primeiro, indicado na Figura 13, no canto superior esquerdo,
indica que o algoritmo procura valorizar 0s né6s com maiores nimeros de amigos em detrimento
dos com poucos amigos. Nota-se que o algoritmo que surge ao utilizarem-se valores de A maior
que zero e B menor que zero é exatamente o oposto. Para a métrica no canto inferior esquerdo,
nota-se que ha a valorizacdo de nds com poucos relacionamentos, porém sem aumentar a valori-
zacdo ao longo do aumento de ligagdes. Por fim, a curva que surge ao definirmos A menor que

zero e B menor que zero, apresenta um relacionamento oposto a pentltima curva.

3.6.2 Experimentos
Os testes realizados visaram analisar o comportamento da predicéo de links para um am-

plo espectro de valores para o algoritmo proposto. Calcularam-se os valores de AUC percorrendo
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um espaco quadrado variando-se tanto a constante A quanto a B de -50 até +50, realizando-se um
namero de testes em cada ponto o suficiente para reduzir o desvio padrdo a valores efetivos para
o teste. Os grafos utilizados foram os explicados na se¢do 3.4, porém, diferentemente dos testes
da secdo 3.5, foram retirados apenas 10% dos links totais.

Os resultados da rede Dolphins estdo expressos na Figura 14. A caracteristica marcante
desse resultado é que ha dois tipos de algoritmos quando analisado a capacidade preditiva. Na
parte superior estdo 0os menos eficientes, em especial 0os que apresentam A maior que zero e B
menor que zero os quais valorizam apenas 0s n6s com poucos relacionamentos e desvaloriza o0s
com elevado namero de relacionamentos, enquanto os com melhor poder preditivo sdo aqueles
que valorizam os nés com poucos relacionamentos, porém desvalorizam de forma menos aguda
0S que possuem muitas arestas. Nota-se que estes estdo divididos através de uma linha que con-

tém os algoritmos com maior capacidade preditiva.

Teste de Score para o grafo Dolphins

Figura 14 — Graficos em 3D e 2D contendo os valores AUC para o algoritmo proposto para o grafo Dolphins.

Os quadrantes que apresentam os maiores valores para predi¢do, contidos nos quadrante
inferior esquerdo e superior direito, tem-se dois tipos distintos de algoritmos com um desempe-
nho satisfatorio. Dentre estes dois, € no primeiro quadrante que se encontra o algoritmo mais fa-
voravel a predigdo. Este algoritmo, representado na Figura 15, apresenta caracteristicas que ndo

sdo emulaveis por nenhum outro proposto. Este da notas altissimas aos nés com maior nimero de
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relacionamentos, caracteristica dos algorimos que venceram nos testes anteriores, como o Hub
Depressed. E notavel também que por possuir caracteristicas tio distintas este apresenta um poder
de predicdo muito superior aos outros algoritmos. Entretanto, o algoritmo que apresenta menor
poder de predicdo esta no quadrante superior esquerdo, quando B vale -22 e Y vale 28. Esse algo-
ritmo é basicamente o0 Adamic Adar distorcido para haver menos variacdo de indice entre as dife-
rentes quantidades de nds. Nota-se entdo, que os algoritmos utilizados até aqui nos trabalhos aca-
démicos, por sua natureza ndo supervisionada, ndo sao capazes de predizer com a eficiéncia total

que o grafo é capaz de fornecer.

Figura 15 — Gréfico que representa a métrica de predi¢do ideal para o grafo Dolphins.

Na Figura 15 temos o resultado do desvio padrdo para o grafo Dolphins. Nota-se que o
ponto onde ocorre o desvio padrdo esta uma casa decimal abaixo da diferenca de valores do me-

Ihor algoritmo da literatura e do algoritmo proposto, demonstrando-se a validade do teste.
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Desvio Padréo do Teste de Score para o grafo Dolphins
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Figura 16— Desvio padréo para cada valor de A e B realizado para o teste para o grafo Dolphins.

Na Tabela 6 demonstrou-se a eficiéncia do algoritmo proposto. Nesses resultados expos-
tos encontram-se os valores para o algoritmo Adamic/Adar e o vencedor dos testes Hub Depres-
sed. O algoritmo proposto demonstra claramente um poder preditivo muito maior quando compa-

rado aos outros dois.

Tabela 3- Valores AUC para os principais algoritmos para o grafo Dolfins com 10% das arestas removidas.

Adamic/Adar 0,747
Hub Depressed 0,748
Algoritmo Proposto 0,783

Os mesmos testes foram realizados para o grafo C.Elegans. Na Figura 17 vé-se o resultado
em 3D, enquanto na Figura 18 o mesmo resultado é expresso em duas dimenses. Identificou-se

para este grafo 0 mesmo comportamento do anterior, ou seja, a existéncia de duas regides distin-
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tas de predicdo. E, assim como para o grafo Dolphins, os algoritmos que apresentaram o melhor
resultado estdo no terceiro e quarto quadrante do grafo, separados desta vez por uma linha menos
inclinada, porém qualitativamente de mesmo formato. Outro ponto de convergéncia entre os tes-
tes foi a localizacdo do algoritmo mais eficiente. Apesar de ndo estarem sobre 0 mesmo ponto,
como era de se esperar, pois cada grafo possui suas proprias caracteristicas, estdo no mesmo local
relativo em relagdo aos graficos, pois 0 ponto maximo encontra-se logo apos a transicao entre o

patamar de baixo poder preditivo e o de alto poder preditivo.

Teste de Score para o grafo C.Elegans
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Figura 17 — Grafico 3D do resultado do teste de score para o grafo C.Elegans.
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Teste de Score para o grafo C.Elegans

A= -3
Y= 2
Levelk 0.86754

Figura 18 — Grafico 3D do resultado do teste de score para o grafo C.Elegans.

Na Figura 19 prova-se que o resultado do teste é valido matematicamente, visto que o
desvio padrdo para o ponto de maximo do grafico estd uma casa decimal abaixo do indice de di-

vergéncia entre o melhor algoritmo o algoritmo proposto.
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Figura 19 - Desvio padrdo para cada valor de A e B realizado para o teste para o grafo Dolphins.

Na Tabela 7 demonstrou-se a eficiéncia do algoritmo proposto. Nesses resultados expos-
tos encontram-se os valores para o algoritmo Adamic/Adar e o vencedor dos testes Resource Al-
location. O algoritmo apresenta um desempenho inferior quando comparado ao grafo Dolphins,

porém ainda apresenta um poder preditivo superior aos algoritmos ja relatados.

Tabela 4 - Valores AUC para os principais algoritmos para o grafo C.Elegans com 10% das arestas removidas

Adamic/Adar 0,833
Resource Allocation 0,853
Algoritmo Proposto 0,867
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4. SOFTWARE

4.1 Componente de Memoria

O componente de memoria do software foi projetado para ser tanto flexivel a grandes
quantidades de dados como para alto desempenho em baixa quantidade de dados. Na Figura 20
demonstram-se as diferencas entre as duas abordagens, em termos quantitativos. Enquanto que
para um baixo nimero de nos a abordagem mais indicada é a manutencao dos dados em memoria
volatil, conforme o nimero de elementos cresce ha a necessidade de uma maneira mais eficiente e
mais robusta para o tratamento destes. Além disso, devido a natureza do problema de predicao de
links, necessita-se haver a persisténcia de dois grafos simultaneos, ainda que logicamente apenas
através de alteracdo das propriedades dos nos e arestas, um relacionado ao instante anterior ao de

predigdo e um representando o periodo de testes, aumentando os requisitos de software.

Arquivos em Disco
Calculo em Memdria

Poucos Dados
Coletados Manualmente

Méedio Volume Dados

Coletados de Sistemas Bancos de Dados SQL

Milhdes de nos

Grande Volume de Dados

Dados Atualizados em Bilhdes de nos
Tempo Real

Abordagens Especificas

Figura 20 - Quantidade de Dados e sua Abordagem de Persisténcia.

Para este projeto abordou-se a solucdo de alocacdo de memoria virtual para grafos peque-
nos e para grandes quantidades de nds buscou-se solu¢es que suportam maiores volumes, como
a persisténcia em disco rigido atravées de banco de dados baseado em grafos porque se espera que

0 programa tenha a maxima escalabilidade possivel.

44



4.2 Banco de Dados Baseado em Grafos

Os bancos de dados relacionais se tornaram pecas fundamentais de sistemas de informa-
¢do nos ultimos anos. Sua forca pode ser vista a partir da grande oferta de produtos de diferentes
empresas, em particular de gigantes da tecnologia. Essa vitalidade deveu-se a eficiéncia em se
modelar dados atraves de relagdes e entidades e também por apresentar uma linguagem unificada
e eficiente. Porém, esse tipo de bancos de dados apresenta a inabilidade de se adaptar a mudangas
no dominio, pois este € modelado a partir de dados fixos e bem mapeado, ou seja, apresenta baixa
escalabilidade. Assim, em areas onde a topologia das informacdes e sua interconectividade é mais
importante que o dominio por si s6, esse tipo de abordagem pode ndo ser a mais eficiente.

O surgimento de banco de dados baseados em grafos foi visto como uma forma de se re-
presentar mais facilmente dados que ndo apresentam uma estrutura légica tdo rigida. Esse tipo de
banco armazena qualquer tipo de estrutura de dados na forma de grafos de maneira completamen-
te genérica, deixando a modelagem a cargo do engenheiro de software. Essa modelagem € facili-
tada especialmente para a necessidade de se persistir informacgdes que apresentam relacionamen-
tos mutaveis ou adaptaveis durante o tempo. Também se deve considerar a diferenca entre o0s ob-
jetos de modelagem para desta abordagem. Diferentemente de banco de dados relacionais, aqui o
dominio apresenta caracteristicas em relagdo a uma particular entidade e suas liga¢fes, como por
exemplo, propriedades especificas de cada elemento ou a presenca de vizinhos diretos que visam
somente atribuir caracteristicas mutaveis.

Portanto, devido aos requisitos de memdria necessarios escolheu-se a utilizacdo de banco
de dados. Entretanto, diferentemente de aplicacBes usuais que utilizam banco de dados relacio-
nais, a elevada diferenca de dominios utilizados e as necessidades especificas de se realizar pes-
quisas em torno de nos e links, escolheu-se 0 banco de dados baseado em grafos. Além disso,
também se considerou a maior eficiéncia destes quando realizado querys de busca através de seus
nos. Segundo Vicknair et al. (2010) o banco Neo4J apresenta uma vantagem de tempo muito su-
perior ao banco relacional MySQL. A Tabela 2 deste trabalho indica o potencial de um banco de
dados baseado em grafos para o problema de predicdo de links. Nas colunas que demonstram 0s

resultados para buscas em profundidade quatro e zero em um conjunto de nds entre mil e um mi-
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Ihdo, a velocidade de busca do banco de dados Neo4J mostrou-se muito mais rapida em quase

todos 0s casos (exceto por um).

4.3 Escolha do Produto

Os critérios para a escolha do banco de dados de grafos dentre os que estdo disponiveis no
mercado foram tanto de ordem objetiva quanto subjetiva. Objetivamente deseja-se um produto
que apresente alta eficiéncia, que seja gratis (se possivel software livre, pois assim ha a possibili-
dade de se ter uma comunidade mais ativa), visto que o projeto ndo tem financiamento, e, por
fim, facilidade de utilizacdo; particularmente suporte a tecnologia Java foi um diferencial nesse
quesito por ser a linguagem do projeto e também vista no curso. As métricas subjetivas conside-
radas foram nivel de maturidade da tecnologia, uma vez que softwares mais recentes estdo mais
suscetiveis a erros e uma rede de utilizacdo ampla, visto que a ideia € disponibilizar o programa
para a comunidade.

Foram analisados para os principais produtos encontrados, Neo4J, HyperGraphDB, Oracle
NoSQL Database EE e DEX, uma série de critérios considerados objetivos. Um benchmark entre
alguns desses bancos demonstrou que DEX e Neo4J sdo os mais eficientes do mercado (Domin-
guez-Sal 2010). Todos os testes foram realizados utilizando as interfaces Java do banco, o que
torna o teste alinhado com os objetivos deste projeto. Os testes foram realizados dentro da escala
de nos que se pretende utilizar nesse trabalho, mil, trés mil e um milhdo com o nimero total de
objetos (nds e arestas) variando de dez mil até mais de nove milhdes. Para grandes quantidades de
artefatos apenas os bancos Neo4J, DEX e Jena conseguiram realizar a carga inicial. Mas mesmo
assim, para a maior quantidade de dados Jena se mostrou incapaz de obter desempenho satisfaté-
rio. Dentre os produtos DEX e Neo4J, vé-se um desempenho mais interessante do primeiro na
realizacdo da insercdo de dados (Kernel 1), na busca por subgrupos de arestas (Kernel 2) (este
teste, porém néo € interessante para esse trabalho, visto que aqui realizamos apenas a procura por
nos). Para o teste mais significativo para a aplicagdo de predicdo de links através de caracteristi-
cas topoldgicas locais, o Kernel 3, os resultados foram favoraveis ao Neo4J. Para pequenas quan-
tidades de nds ha praticamente um empate técnico entre todos os bancos, porém o Neo4J escala
melhor para valores elevados de nés. Além disso, o este também apresenta como vantagem (me-

nos significativa) a criacdo de dados com menor memoria alocada. Assim, para o quesito de de-
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sempenho o banco Neo4J foi considerado o produto ideal para este trabalho. A necessidade de se
utilizar um software livre gerou grandes restricbes ao problema. Considerando-se 0s quatro ban-
cos listados apenas o HypergraphDB é cem por cento de graca. O fabricante de DEX fornece uma
versdo ultraleve que serve apenas para testes. O Neo4J apresenta uma versdo para a comunidade,
porém sempre anterior ao estado da arte do software assim como o banco de dados da Oracle. De
acordo com essa restricdo, o Unico banco retirado de hipotese foi o DEX. O ultimo requisito ne-
cessario considera a integracdo do banco com a tecnologia Java (ou seja, facilidade de integracédo
ao projeto). Dos bancos remanescentes, Neo4J e HypergraphDB, nenhum apresentou problemas
de conectividade com aplicacbes em Java.

Para os critérios subjetivos verificou-se que a colocagcdo no mercado do produto acaba
sendo resultado de um produto maduro e muito aplicado. Segundo o site http://db-

engines.com/en/ranking_trend/graph+dbms hoje o banco lider de mercado é o Neo4J, o qual su-

pre todas as necessidades subjetivas analisadas.

DB-Engines Ranking of Graph DEMS
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= InfinitaGraph
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o
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Figura 21 - Comparagdo de Popularidade dos Bancos de Dados

Portanto, segundo as analises feitas, tanto objetiva, como subjetiva, resultaram na escolha

do banco de dados baseado em grafos Neo4J.
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4.4 Caracteristicas do Banco de Dados Neo4J

Neo4j é um dos mais populares bancos de dados baseados em grafo da atualidade em pro-
ducdo desde 2013, com licenca livre e comercial, escrito totalmente em Java e open source. Esse
produto apresenta algumas caracteristicas interessantes para esse projeto, como o suporte a grafos
genericos, através da possibilidade de se realizar ligacGes extras a um determinado no e a capaci-
dade de atribuir caracteristicas a qualquer elemento do grafo em qualquer instante, tornando-o
uma ferramenta versatil e interessante para a predi¢do de links. Além disso, devido a sua propria
implementacdo, possui uma alta afinidade com a linguagem Java, contendo mais de uma API de
acesso aos dados persistidos, sendo que cada uma possui caracteristicas Unicas para a escolha de

sua utilizagéo.

4 5-Estrutura de Dados em Memoria Volatil

Para pequenos grafos, de até dois mil nds, dependendo da meméria RAM disponivel, uma
alternativa é a utilizacdo de estruturas de dados que mantenham todo o grafo em memaria volatil.
A utilizagdo dessa abordagem tem a vantagem de se beneficiar da velocidade com que essa me-
moria trabalha, muito superior ao disco rigido, diminuindo o tempo computacional gasto com 0s
calculos. Para essa abordagem utilizou-se a tecnologia JgraphT. Este framework implementa efi-
cientemente uma estrutura de grafos de forma genérica com a capacidade de se adicionar proprie-

dades aos elementos.

public class CacheDataBase implements DataBase {

private static Graph<String, DefaultEdge> instance = new SimpleGraph<String, DefaultEd-
ge>(DefaultEdge.class);

public static Graph<String, DefaultEdge> getInstance() {
return instance;

}

@Override
public void createNode(String label) {
instance.addVertex(label);

}

@Override
public void createRelationship(String firstNodeId, String secondNodeId) {
instance.addEdge(firstNodeIld, secondNodeld);

}
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@Override

public void createNodesFriendsProperty() {
Set<String> firstNode = instance.vertexSet();
Set<String> secondNode = instance.vertexSet();

for (String first : firstNode) {
for (String second : secondNode) {
Set<DefaultEdge> edges = instance.getAllEdges(first, second);
int size = edges.size();

instance.addVertex(first + second);
instance.addEdge(first, String.valueOf(size));

}
@0verride

public List getAllNodes() {
return (List) instance.edgeSet();

}

@0verride

public List neighborsOf(String id) {
List neighbors = Graphs.neighborListOf(instance, id);
return neighbors;

}

@0verride
public void clear() {
instance = new SimpleGraph<String, DefaultEdge>(DefaultEdge.class);

¥
}

4.6-Modelagem

A modelagem para a persisténcia em forma de grafo considera como elementos para a
persisténcia as entidades participantes no dominio e o relacionamento entre elas. Apesar de o
problema de predicdo de links ndo apresentar uma alta variedade de tipos de nos e relacionamen-
tos, alguns cuidados em relacdo a modelagem podem ser tomados a fim de se diminuir o tempo
computacional dos calculos. Basicamente ha a existéncia de um tipo de n6 genérico e um tipo re-

lacionamento bidirecional entre esses, uma vez que 0 banco exige direcionamento das arestas.
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Figura 22 - Rede Exemplo da Modelagem

Porém, esse dominio pode ser estendido visando facilitar o calculo da predicédo de relacio-
namentos. A adicdo de entidades ou propriedades visando expressar quantitativamente as princi-
pais caracteristicas topoldgicas necessarias para a predicdo, como o nimero de vizinhos de de-
terminado no utilizado, por exemplo, em algoritmos como Adamic/Adar, pode trazer elevados
beneficios computacionais quando considerado o calculo de grande volume de dados, uma vez

que o custo de se buscar por um nd € inferior ao de se buscar por todos vizinhos.
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Figura 23 - Rede Exemplo Estendida para Facilitar a Predigdo de Links

Outro fator necessario para haver a predicdo, e que € diretamente impactante na modela-
gem do banco, é a necessidade de haver dois instantes temporais das entidades do dominio. A
persisténcia de mais de um grafo (no caso da predicao seria o de aplicacdo do algoritmo e de vali-
dacdo) torna-se inviavel quando tratado grandes volumes de dados. Assim, assumindo-se essa
requisicdo, modelam-se as arestas com propriedades caracteristicas para representacdo temporal,
como timestamps, ou cria-se uma propriedade booleana associada as arestas visando indicar a
qual dos dois periodos aquela entidade esta inserida, ou seja, uma propriedade visando identificar
se a aresta pertence ao instante temporal de teste ou de validagdo. No caso desse trabalho adicio-
nou-se a propriedade booleana “removed” para indicar se a aresta estd logicamente removida (pe-

riodo de testes) ou ndo (periodo de validacdo).

51



€3

removed: false @ removed: false

removed: true @ removed: false
removed: false ®

removed: false

@ removed: false
removed: false

e O &

Figura 24 - Rede Exemplo Demonstrando a Modelagem do Periodo de Testes e Validacéo

4.7-Core API

O banco Neo4J apresenta uma boa variedade de interfaces para a recuperagdo de informa-
cOes. Sao trés formas de se relacionar com o banco sendo que todas possuem uma APl em java.
Essas interfaces apresentam diferencas em relagdo a linguagem de acesso ao banco, ao desempe-
nho computacional e a forma de se realizar o acesso. Na Figura 25 representam-se estas APIs co-
mo uma pilha de blocos onde o mais acima se preza pela expressividade e 0 mais abaixo pela

preciséo.
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Figura 25 - Pirdmide de Frameworks do Neo4J

A primeira delas, a Cypher Query Language, € a linguagem de mais alto nivel para se co-
municar com o banco. Essa linguagem é a representacdo adaptada, para a forma de grafos, do
SQL dos bancos de dados relacionais. Por estar em alto nivel apresenta caracteristicas interessan-
tes ao desenvolvedor, como alta legibilidade, por exemplo, o que torna suas querys facilmente
entendiveis mesmo por quem ndo é profundo conhecedor da linguagem. Porém esse nivel de abs-
tracdo vem com um alto custo de desempenho (Liben-Nowell et al. 2007), o retorno de resultados
¢ em média muito mais lento que outras interfaces que acessam diretamente o dominio. Como
esse projeto visa a maior eficiéncia possivel para o calculo de predicdo de links, escolheu-se a
API de mais baixo nivel possivel. A mais proxima possivel do banco, a Kernel, ndo estd comple-
tamente disponivel aos usuarios, visto que apenas o tratamento de eventos nas entidades é passi-
vel de utilizacdo. A interface Core contém os tipos primitivos do banco, como no, relacionamen-
tos e propriedades. Por se tratar de uma API de baixo nivel, teoricamente, o banco ndo precisa
avaliar nenhuma condicéo de pesquisa, assim a linguagem de programacao consegue acessar dire-
tamente os dados persistidos. Devido a essa abordagem o desempenho depende diretamente da
qualidade da programacdo de acesso aos dados. A seguir demonstra-se uma simples implementa-

¢do nesta API para demonstrar sua efetividade em se conectar ao banco.
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4.8 Teste da API do Neo4J- Algoritmo Common Neighbors

Para exemplificar a utilizacdo do banco de dados para a predi¢do de links demonstrar-se-a
a implementacéo do algoritmo Common Neighbors utilizando-se a Core API. Este algoritmo par-
te da simples ideia que dois n6s aumentam sua probabilidade de estarem conectados conforme
seu numero de n6s em comum aumenta. Implementou-se este da forma mais simplificada possi-
vel visando-se a didatica dessa explicagdo e ndo a mais eficiente computacionalmente. Nota-se
que o calculo deste algoritmo ¢é feito elevando-se a matriz simétrica de arestas de um determinado
né ao quadrado. Porém, visando evitar o alto custo computacional dessa abordagem, aqui iremos
simplesmente percorrer os relacionamentos de dois n6s no banco de dados e conferir se ha ele-

mentos em comum.

public class CommonNeighbors implements Strategy {

@Override
public Map<String, Double> calculate(DataBase instance) {

Map<String, Double> map = new HashMap<String, Double>();

Iterable<Node> nodes = instance.getAllNodes();

for (Node firstNode : nodes) {

List<Node> firstNodeFriends = instance.neighborsOf(String.valueOf(firstNode.getId()));
for (Node secondNode : nodes) {

if (secondNode.getId() <= firstNode.getId()) {
continue;

}
List<Node> secondNodeFriends = instance.neighborsOf(String.valueOf(secondNode.getId()));
int commonFriends = CollectionsUtil.compare(firstNodeFriends, secondNodeFriends);

map.put("(" + firstNode.getId() + " : " + secondNode.getId() + , (double) commonFriends);

}
}

return map;

@Override
public List<Node> getAllNodes() {
Transaction tx = getInstance().beginTx();
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List<Node> nodes = new ArraylList<Node>();

try {

Iterable<Node> allNodes = GlobalGraphOperati-
ons.at(getInstance()).getAllNodes();

for (Node node : allNodes) {
nodes.add(node);

}

tx.success();
} finally {
tx.finish();

}

return nodes;
}
@0verride

public List<Node> neighborsOf(String id) {

Transaction tx = getInstance().beginTx();

List<Node> friends = new ArraylList();

Node node = getInstance().getNodeById(Long.valueOf(id));

try {

for (Relationship relationship : node.getRelationships()) {
Node friend = relationship.getStartNode();
if (friend.equals(node)) {
friend = relationship.getEndNode();

}

friends.add(friend);

}

tx.success();
} finally {

tx.finish();
}

return friends;

}
A resposta desse programa para o banco de dados inicializado no exemplo anterior daria

como saida:
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Creating Nodes ...

Creating Relationships ...

Creating Friends Property ...

{(3 : 6)=1.8, (3 : 7)=0.0, (1 : 6)=0.0, (3 : 5)=08.8, (4 : 5)=0.0, (2 : 7)=0.0, (6 : 7)=0.0, (4
: 6)=1.0, (2 : 6)=1.0, (2 : 5)=0.0, (4 : 7)=0.0, (1 : 5)=3.0, (1 : 7)=1.0, (1 : 4)=0.0, (3 :
4)=2.0, (5 : 6)=0.0, (1 : 2)=0.0, (1 : 3)=0.0, (2 : 3)=2.0, (5 : 7)=0.08, (2 : 4)=2.0}

Shutting down database ...

4.9 Tipos de Grafos

Os formatos de representacdo de grafos sdo os mais variados possiveis. O grande nimero
de propriedades que um grafo pode possuir permitiu que, ao longo do tempo, fossem desenvolvi-
dos diferentes tipos de formas de serem armazenados, conforme as necessidades de cada softwa-
re. Cada tipo visa solucionar uma necessidade especifica, desde representar uma matriz de adja-
céncia até grafos que contém tipos complexos contendo informagfes como, peso de arestas e po-
sicionamento do elemento (n6s) na tela. Infelizmente essa situagdo criou uma impossibilidade de
um software conseguir suportar todos os tipos possiveis de extensdes, 0 que levou a escolha de
formatos especificos para a utilizacdo do programa.

A escolha dos formatos suportados baseou-se nas caracteristicas suportadas por este e na
disponibilidade de arquivos de grafos. O primeiro fator é de crucial importancia ao sistema, pois
um arquivo pobre em informacGes restringe as funcionalidades do sistema. As caracteristicas mi-
nimas necessarias pelas necessarias para o problema de Predicdo de Links sdo os tipos basicos
dos dados da rede, no e arestas, porém é interessante que haja o suporte a alguns atributos de re-
des como labels e pesos de arestas. O segundo fator podera ditar o sucesso do programa uma vez
que a dificuldade de conversdo entre arquivos (basta observar o elevado nivel de especificidade
dos softwares que lidam com grafos) pode limitar a sua aplicabilidade. Esse critério de “populari-
dade” teve um alto peso na escolha dos formatos. Na Figura 26, identificou-se que poucos forma-

tos nédo aceitam as duas requisicoes.

56



o Qf'? &
%‘;‘&; i\@\} < &
o v ﬁ§~ &
‘?3;" & {\"' -':.‘.!{\ o 'b\
I F P eSS e G
SIS IETEIE
S - o o 4 o
S/ S E TS ESES €SS
sV X X
DL Ucinet X X X
DOT Graphviz X X
GDF X X X X
GEXF X | X X X X X X
GML X X X
GraphML X X X X X X
NET Pajek X X X
TLP Tulip
VNA Netdraw X X
Spreadsheet X X X

Figura 26 - Comparagdo dos Tipos de Formato de Grafos

Os tipos escolhidos para o programa suportar foram NET Pajek e GML. O tipo NET Pa-
jek, desenvolvido em 1996, apresenta uma simplicidade e efetividade impar na representagédo de
grafos. Esse formato disponibiliza a possibilidade de persisténcia das caracteristicas basicas de
um grafo, sendo perfeitamente ajustavel ao problema de predicdo de links. Sua sobrevida histori-
ca acabou resultando em uma alta disponibilidade de grafos, tornando seu suporte crucial para a
sobrevida de qualquer programa da area de redes. Hoje, ele é suportado por quase todos os pro-
gramas, incluindo o préoprio Pajek, NodeXL, NetworkX e Grephi. A seguir apresenta-se o grafo

modelado na se¢do Modelagem neste formato.

*Vertices 7
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*Arcs
*Edges
1 2 1
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O formato GML, ou Graph Modeling Language, é basicamente um arquivo em formato de
texto com uma sintaxe muito amigavel ao usuario. Contém também as principais necessidades
desse projeto, como propriedades de nds e arestas e possui alta utilizacdo dentre os programas
comerciais na area. Todos os arquivos utilizados nesse trabalho foram adquiridos em formato

GML. A seguir apresenta-se 0 mesmo grafo anterior nesse formato.

graph
[
node
[
id1
label "Node A"
]
node
[
id 2
label "Node B"
]
node
[
id 3
label "Node C"
]
node
[
id 4
label "Node C"
]
node
[
id5
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label "Node C"

1
node
[
id 6
label "Node C"
]
node
[
id 7
label "Node C"
1
edge
[
source 1
target 2
]
edge
[
source 1
target 3
1
edge
[
source 1
target 4
]
edge
[
source 2
target 5
1
edge
[
source 3
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target 5

edge
[
source 4
target 5
]
edge
[
source 1
target 6
]
edge
[
source 6
target 7

]
]

4.10 Visualizacéo

Para a camada gréafica escolheu-se o JavaFX, pois alem de possuir algumas caracteristicas

interessantes possui total compatibilidade com a linguagem utilizada nas outras camadas. Essa

tecnologia basicamente empacota outras ja desenvolvidas anteriormente para o proprio Java, co-

mo o Swing e a AWT, porém focando na interatividade e na interface grafica para os usuarios. A

interface Canvas em especial representa uma vantagem na parte grafica devido a seu desempenho

desenhando elementos na tela, uma vez que os grafos apresentam grande quantidade de nds e li-

gacdes a serem exibidos.

A tela baseou-se na separagdo de camadas de informagdes ao usuario. A primeira camada

de visualizacdo define um BorderPane, Figura 27, artefato que possui as regides de usabilidade

padrdo para o usuario, sendo aqui utilizado o topo para o cabecalho do programa, a esquerda para

menus e botdes, a central para a visualiza¢do do grafo e a direita para a saida de informacdes.
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| Layout Sample EI@

Figura 27 - Layout Padrdo do Programa

Para a visualizacdo do grafo, contido na parte central, criou-se um tipo complexo de nés
para fazer a representacdo visual do objeto contido no banco de dados e instanciou-se um objeto
linha entre os pontos centrais dos nés. A classe que representa visualmente o vértice foi desen-
volvida para transformar as informacdes de posicdo, tamanho e texto contidas no dominio em in-
formacgOes visuais para o usuario. Essa classe baseou-se na implementacdo do StackPane, que
permite a sobreposicdo de artefatos visuais; o circulo que representa um noé e um texto represen-
tando seu Label, além de possuir possibilidades de atribuir propriedades que contém informagdes
a respeito do posicionamento espacial do objeto. Para a criacdo das linhas entre os elementos pre-
cisou-se percorrer todos os nos desenhados na tela, seus vizinhos e adicionar uma linha entre 0s

pontos centrais destes. Os codigos dessas implementagdes estdo listados em anexo.

5. PROGRAMA EM FUNCIONAMENTO

A tela em funcionamento pode ser vista na Figura 28.
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Figura 28 - IHM do Programa contendo a Rede Genérica

6. TRABALHOS FUTUROS

O presente projeto focou em alguns pontos do problema de predicéo de links, que podem
ser ampliados futuramente. Primeiramente, utilizaram-se apenas algoritmos de predicao local, o
que beneficia o software no quesito velocidade, porém penaliza na questdo da eficdcia. Uma pos-
sivel extensdo seria estender o projeto para algoritmos de predicdo global, a fim de se tornar o
programa mais versatil. Além disso, ndo foi utilizada nenhuma informagdo semantica dos grafos,
como peso de arestas nos algoritmos preditores, podendo ser outro ponto de extensao. Finalmen-
te, a ampliacdo e otimizagdo da API desenvolvida para esse software € o caminho mais indicado a

ser seguido de imediato.

7. CONCLUSOES

Neste relatdrio apresentou-se a criacdo de um software capaz de automatizar a predicao de
links. O trabalho também construiu um framework capaz de utilizar poucas informagfes contidas
no grafo e obter uma alta eficacia. Para o desenvolvimento do programa, demonstrou-se como
solucionar problemas associados a predicdo de links, em particular a persisténcia e a visualizacdo
dos dados. Em relacdo a persisténcia, demonstrou-se como resolver o problema de armazenagem
dos dados, utilizando-se de bancos especiais para grafos e como se fazer o acesso a esses dados
de forma mais rapida possivel. Em especial para pequenas quantias de dados, demonstrou-se co-
mo realizar a computacdo mantendo os dados em memoria, aumentando a velocidade dos calcu-
los. A camada de visualizacdo, por sua vez, exigiu que fossem utilizadas tecnologias graficas re-
centes, pois a sua complexidade esta na dificuldade em se exibir diferentes quantidades de dados.
Esse problema foi resolvido utilizando duas técnicas: utilizando um componente capaz de impri-
mir na tela os grafos no seu formato original, e listando-se todos os tipos em tabelas estaticas. Pa-
ra propor uma nova métrica, utilizou-se de conhecimentos prévios a respeito da capacidade predi-
tiva de algoritmos que utilizam informac6es locais de maneira ndo supervisionada. A partir do

entendimento de como funcionam os relacionamentos entre nés de uma rede, e de quais algorit-
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mos desempenham melhor tentando extrair essas informacdes, prop6s-se um método que aumen-
tou significativamente a eficacia em relacdo a estes.

Portanto, esse trabalho consistiu em expandir as fronteiras da predicéo de links, criando
um software de facil utilizacdo para qualquer usuario interessado no problema, e também aumen-

tando a capacidade preditiva dos algoritmos existentes.
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ANEXO A

1. LINK PREDICTION API

O problema de predicao de links hoje apresenta apenas poucos algoritmos implementados
em softwares diferentes. O cddigo desenvolvido inclui ndo somente os algoritmos contidos na

literatura, mas também um pacote que seja capaz de avaliar a efetividade desses.

Para a implementacao do algoritmo foi utilizada o padrdo de projeto Strategy, do influente
livro Design Patterns, de Erich et al. 1995. A ideia basica por tras desse padrdo € que 0 usuario
apenas instancie o objeto no momento de sua construgdo e chame a sua execucao de maneira ge-

nérica. O padrédo aplicado ao projeto pode ser observado no diagrama UML da Figura 29.

pkg

Link Prediction

- Algorithm : Strategy

Strateqy

+ calculate() - Map

1

CommonNeighbors Adamic/Adar

+ calculate() : Map + calculate() - Map

Figura 29 — Padrdo Strategy Aplicado ao Software.
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Em particular para esse projeto instanciou-se todos os algoritmos previamente em uma

enumeracao para facilitar ao usuério a chamada da classe.

package linkprediction.math.predictors;

/**
* Enumeration that instantiate all local predictors.
*/

public enum Algorithm {

CommonNeighbors(new CommonNeighbors()), AdamicAdar(new AdamicAdar()), JaccardsCoeffici-
ent(new JaccardsCoefficient()), SaltonIndex(new SaltonIndex()), LeichHolmeNewman(new LeichHol-
meNewman()), Sorensen(new Sorensen()), PreferentialAttachment( new PreferentialAttachment()),
HubPromoted(new HubPromoted()), HubDepressed(new HubDepressed()), ResourceAllocation(new Re-
sourceAllocation());

private Strategy instance;

private Algorithm(Strategy instance) {
this.instance = instance;

}

public Strategy getInstance() {
return instance;

}

A chamada para a utilizacdo do algoritmo fica facilitada através dessa abordagem, pois
cabe ao usuario apenas a escolha do algoritmo. Assim, toda a implementacéo e inteligéncia asso-

ciada a programacdo ficam transparentes ao usuario da API.

LinkPrediction linkPrediction = new LinkPrediction(Algorithm.CommonNeighbors);
Map<String, Double> map = linkPrediction.calculate(dataBase);

Porém, o calculo das arestas preditas exige que os dados estejam armazenados em algum
lugar da memdria para que este acesse e faca a computacdo. A dificuldade é tornar a implemen-
tacdo genérica o suficiente para se adaptar a qualquer estrutura de dados. Nesse trabalho, por e-
xemplo, utilizaram-se duas abordagens para manter os dados, uma em memoria através da API
jgrapht e uma em banco através do framework Neo4J. Para solucionar esse problema criou-se
uma interface em que especifica os métodos necessarios para a computacao da predicao de links,

e deixa ao usudrio a tarefa de implementé-los.
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pkg

DataBase

+ getAllModes() : List
+ neighborsOfiid - String) © List

CommonNeighbors

+ calculate(dataBase : DataBase) : Map

Figura 30 — Abstracdo das OperacBes necessérias a Predicdo de Links.

Verifica-se que para a predicao de links através de informacGes locais basta receber a lista
de todos 0s nds e poder acessar 0s nos que se relacionam a um determinado. Essa tarefa ndo seréa

tdo simples quando o programa for estendido a algoritmos de predicéo através de informacdes

globais.

package linkprediction.memory;
import java.util.*;
public interface DataBase {

/**
* Retrieve a list with all nodes.
*/

public List<Object> getAllNodes();

/**
* Retrieve a list of all neighbors of a specified node.
*/

public List<Object> neighborsOf (String id);

public class CommonNeighbors implements Strategy {

@Override
public Map<String, Double> calculate(DataBase instance) {

}
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Outro problema associado a predicéo de links € comparar 0s nds preditos com 0s armaze-
nados em memoria. Assim como ndo se sabe a estrutura de dados utilizada pelo usuario, ndo se
pode prever qual serdo os tipos dos elementos do grafo. Assim, uma abordagem especifica deve
ser utilizada para esse problema, utilizando-se ferramentas avancadas do Java, como reflexao e

colecdes. A seguir exemplifica-se a utilizagdo de reflex&o para adquirir campos de uma classe.

public static Collection<Field> getDeepDeclaredFields(Class c) {
if (_reflectedFields.containsKey(c)) {
return _reflectedFields.get(c);
}

Collection<Field> fields = new ArraylList<Field>();
Class curr = c;

while (curr != null) {

try {
Field[] local = curr.getDeclaredFields();

for (Field field : local) {
if (!field.isAccessible()) {
try {
field.setAccessible(true);
} catch (Exception ignored) {
}
}

int modifiers = field.getModifiers();
if (!Modifier.isStatic(modifiers) && !fi-
eld.getName().startsWith("this$")
&8& !Modifier.isTransient(modifiers)) {
fields.add(field);
}
}
} catch (ThreadDeath t) {
throw t;
} catch (Throwable ignored) {
}

curr = curr.getSuperclass();

_reflectedFields.put(c, fields);
return fields;
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2. IMPLEMENTACOES

Common Neighbors
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29.
30.
31.
32.
33.
34.

35.
36.

37.
38.

39.
40.
41.
42.
43.
44,
45,
46.

package linkprediction.math.predictors;
import java.util.HashMap;

import java.util.list;

import java.util.Map;

import linkprediction.memory.DataBase;

import org.neo4j.graphdb.Node;

. import util.CollectionsUtil;

. public class CommonNeighbors implements Strategy {

@Override
public Map<String, Double> calculate(DataBase instance) {

Map<String, Double> map = new HashMap<String, Double>();
Iterable<Node> nodes = instance.getAllNodes();

for (Node firstNode : nodes) {
if (firstNode.getId() == 0) {
continue;

}

List<Node> firstNodeFriends = instan-
ce.neighborsOf(String.valueOf(firstNode.getId()));

for (Node secondNode : nodes) {
if (secondNode.getId() <= firstNode.getId()) {
continue;

}

List<Node> secondNodeFriends = instan-
ce.neighborsOf(String.valueOf(secondNode.getId()));

double commonFriends = CollectionsU-
til.compare(firstNodeFriends, secondNodeFriends).size();

map.put("(" + firstNode.getId() + " : " + secondNo-
de.getId() + ")", commonFriends);

}
}

return map;



a47.

Database

Interface

package linkprediction.memory;

import

import

public

}

java.util.List;

org.neo4j.graphdb.Node;

interface DataBase {

public List<Node> getAllNodes();

public List<Node> neighborsOf(String id);

Banco em Disco Rigido

package linkprediction.memory.database;

import
import
import
import
import

import
import

import
import
import
import
import
import
import
import
import
import

import
import

public
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java.
java.
java.
java.
java.

io.File;
io.IOException;
util.Arraylist;
util.List;
util.Set;

linkprediction.memory.DataBase;
linkprediction.view.ProgramView;

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

jgrapht.Graph;
jgrapht.graph.DefaultEdge;

neo4j
neo4j
neo4j
neo4j
neo4j
neo4j

neo4j

.graphdb.GraphDatabaseService;
.graphdb.Node;

.graphdb.Relationship;
.graphdb.RelationshipType;
.graphdb.Transaction;
.graphdb.factory.GraphDatabaseFactory;
neo4dj.
.tooling.GlobalGraphOperations;

kernel.impl.util.FileUtils;

util.DatabaseUtil;
util.GraphUtil;

class GraphDataBase implements DataBase {

private static GraphDatabaseService database;

public static int numberOfNodes = -1;



public static GraphDatabaseService getInstance() {
if (database == null) {
ProgramView.write("Initializing Database ...");
database = new GraphDatabaseFac-
tory() .newEmbeddedDatabase(DatabaseUtil.DB_PATH);
registerShutdownHook();

}
return database;
}
public GraphDataBase() {
clearDb();
}

public void createDb(Graph<String, DefaultEdge> graph) {
clearDb();

Transaction tx = getInstance().beginTx();

try {
defineCorrectionOfIdConstant(graph.vertexSet().iterator().next());
createNodes(graph.vertexSet());
createRelationship(graph.edgeSet());
createRelationshipRemovedProperty(graph.edgeSet());
createNodesFriendsProperty(graph.vertexSet());
tx.success();

} finally {

tx.finish();
}

}
private void createRelationshipRemovedProperty(Set<DefaultEdge> edgeSet) {
Iterable<Relationship> relationships = GlobalGraphOperati-
ons.at(getInstance()).getAllRelationships();

for (Relationship relationship : relationships) {
relationship.setProperty(DatabaseUtil.REMOVED_PROPERTY, false);
}

}

private void defineCorrectionOfIdConstant(String next) {
if (next.equals("0")) {

DatabaseUtil.CONSTANT_CORRECTION = 1;
} else {
DatabaseUtil.CONSTANT_CORRECTION = ©;

}
}

private void createNodesFriendsProperty(Set<String> vertexSet) {
System.out.println();
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System.out.println("Creating Friends Property");
for (String vertex : vertexSet) {

Node node = getNodeById(vertex);

ArraylList<Node> relationshipNodes = DatabaseU-
til.getRelationshipNodes(node);

node.setProperty(DatabaseUtil.NUMBER_FRIENDS_PROPERTY, relationshipNo-
des.size());

}

@SuppressWarnings("unused")

private void createRelationship(Set<DefaultEdge> edgeSet) {
System.out.println();

System.out.println("Creating Relationships");

ArrayList<ArrayList<String>> edges

GraphUtil.getEdgeArray(edgeSet);
for (ArrayList<String> edge

: edges) {
Node firstNode = getNodeById(edge.get(0));
Node secondNode = getNodeById(edge.get(1));

Relationship relationship = firstNode.createRelationshipTo(secondNode,
RelTypes.KNOWS);
}
}
/**
* nodeld
*
*/

private Node getNodeById(String nodeIld) {

return getInstance().getNodeById(Integer.parseInt(nodeId) + DatabaseU-
til.CONSTANT_CORRECTION);
}

@SuppressiWarnings("unused")

private void createNodes(Set<String> vertexSet) {
System.out.println();
System.out.println("Creating Nodes ")

for (String vertex : vertexSet) {

Node node = getInstance().createNode();

}

}

public void shutDown() {
System.out.println();

System.out.println("Shutting down database ")
getInstance().shutdown();
}

private void clearDb() {
try {

FileUtils.deleteRecursively(new File(DatabaseUtil.DB_PATH));
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} catch (IOException e) {
throw new RuntimeException(e);
}
}

private static void registerShutdownHook() {
Runtime.getRuntime () .addShutdownHook(new Thread() {
@Override
public void run() {
database.shutdown();

}
1)
}
private static enum RelTypes implements RelationshipType {
KNOWS
}
@Override

public void createNode(String label) {
Transaction tx = getInstance().beginTx();

try {
Node node = getInstance().createNode();
node.setProperty(DatabaseUtil.NODE_LABEL, label);
ProgramView.write("Creating Node: " + node.getId());

tx.success();
} finally {

tx.finish();
}

}

@Override
public void createRelationship(String firstNodeId, String secondNodeId) {

Transaction tx = getInstance().beginTx();

try {
Node firstNode = getNodeById(firstNodeId);
Node secondNode = getNodeById(secondNodeId);

Relationship relationship = firstNode.createRelationshipTo(secondNode,
RelTypes.KNOWS);
relationship.setProperty(DatabaseUtil.REMOVED_PROPERTY, false);

ProgramView.write("Creating Relationship: " + firstNode.getId() + " - "
secondNode.getId());

tx.success();
} finally {

tx.finish();
}

}
@Override
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public void createNodesFriendsProperty() {

Transaction tx = getInstance().beginTx();

try {
Iterable<Node> nodes = GlobalGraphOperati-

ons.at(getInstance()).getAllNodes();

for (Node node : nodes) {
if (node.getId() == 0) {
continue;

}

ArrayList<Node> relationshipNodes = DatabaseU-
til.getRelationshipNodes (node);

int size = relationshipNodes.size();
node.setProperty(DatabaseUtil.NUMBER_FRIENDS_PROPERTY, size);

ProgramView.write("Node: " + node.getId() + " Friends: " + size);

}

tx.success();
} finally {
tx.finish();

}
¥

@Override
public List<Node> getAllNodes() {
Transaction tx = getInstance().beginTx();

List<Node> nodes = new ArraylList<Node>();

try {

Iterable<Node> allNodes = GlobalGraphOperati-
ons.at(getInstance()).getAllNodes();

for (Node node : allNodes) {
if (node.getId() == 0) {
continue;

}

nodes.add(node);

}

tx.success();
} finally {
tx.finish();

}

return nodes;
}
@Override

public List<Node> neighborsOf(String id) {
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Transaction tx = getInstance().beginTx();
List<Node> friends = new ArrayList<Node>();
Node node = getInstance().getNodeById(Long.valueOf(id));

try {

for (Relationship relationship : node.getRelationships()) {

Node friend = relationship.getStartNode();
if (friend.equals(node)) {
friend = relationship.getEndNode();

}
if (friend.getId() == 0) {

continue;

}

friends.add(friend);

}

tx.success();
} finally {
tx.finish();

}

return friends;

}

@0verride
public void clear() {

Transaction tx = getInstance().beginTx();

try {
// Deleting All Relationships

Iterable<Relationship> allRelationships = GlobalGraphOperati-

ons.at(getInstance()).getAllRelationships();
for (Relationship relationship : allRelationships) {

ProgramView.write("Deleting Relationship: " + relation-

ship.getEndNode() + " "
+ relationship.getStartNode());
relationship.delete();
}

// Deleting All Nodes
Iterable<Node> allNodes = GlobalGraphOperati-
ons.at(getInstance()).getAllNodes();
for (Node node : allNodes) {
numberOfNodes++;
ProgramView.write("Deleting Nodes:
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node.delete();
}

tx.success();
} finally {
tx.finish();

}

Banco de Dados em Memoria

package linkprediction.memory.cache;

import java.util.List;
import java.util.Set;

import linkprediction.memory.DataBase;

import org.jgrapht.Graph;

import org.jgrapht.Graphs;

import org.jgrapht.graph.DefaultEdge;
import org.jgrapht.graph.SimpleGraph;

public class CacheDataBase implements DataBase {

private static Graph<String, DefaultEdge> instance = new SimpleGraph<String, DefaultEd-
ge>(DefaultEdge.class);

public static Graph<String, DefaultEdge> getInstance() {
return instance;

}

@Override
public void createNode(String label) {
instance.addVertex(label);

}

@Override
public void createRelationship(String firstNodeId, String secondNodeId) {
instance.addEdge(firstNodeIld, secondNodeld);

}

@Override

public void createNodesFriendsProperty() {
Set<String> firstNode = instance.vertexSet();
Set<String> secondNode = instance.vertexSet();

for (String first : firstNode) {
for (String second : secondNode) {
Set<DefaultEdge> edges = instance.getAllEdges(first, second);
int size = edges.size();
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instance.addVertex(first + second);
instance.addEdge(first, String.valueOf(size));

}

@Override
public List getAllNodes() {
return (List) instance.edgeSet();

}

@Override

public List neighborsOf(String id) {
List neighbors = Graphs.neighborListOf(instance, id);
return neighbors;

}

@Override
public void clear() {
instance = new SimpleGraph<String, DefaultEdge>(DefaultEdge.class);

}



