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RESUMO 

 

A predição de links visa prever relacionamentos em uma rede de dados. Uma grande vari-

edade de campos pode se beneficiar dessa tecnologia; por exemplo, a modelagem de ambientes 

físicos através de grafos visando à movimentação de robôs. Hoje há dificuldade em se obter um 

programa que aplique de forma automatizada todas as etapas necessárias de avaliação e recomen-

dação de links. Outro ponto negativo no uso de predição de links é a baixa eficácia dos preditores 

de menor custo computacional. Os algoritmos mais interessantes do ponto de vista de tempo de 

execução, infelizmente, ainda possuem baixo poder preditivo. Esse relatório descreve a criação de 

um software automático que realiza todo o processo de predição de links de forma transparente ao 

usuário, através de uma interface de fácil utilização. Outra contribuição do projeto foi o aumento 

da capacidade de predição dos algoritmos visando tornar sua aplicação mais confiável.  

 

 

 

 

 

 

 

 

Palavras-chave: Predição de Links, Software Automático de Predição de Links, Algoritmo Local 

Supervisionado. 
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ABSTRACT 

 

Link prediction aims at predicting relationships in a network. A variety of fields can ben-

nefit from this tecnology; for instance, physical environments can be modeled by graphs so as to 

encode robot navigation. It is now difficult to find a computer program that can automatically run 

all steps needed in link evaluation and recommendation. Another difficult point in link prediction 

is the low accuracy of predictors with low computational cost. The best algorithms from the point 

of view of execution time are, unfortunately, of low predictive power. This report describes an 

automated software package that runs the whole prediction link process in a transparente manner, 

through an easy-to-use interface. Another contribution of the project was  an increase in predicti-

on performance for a predictor with low computational cost. 

 

 

 

 

 

 

 

 

 

Keywords: Link Prediction, Automatic Software of Link Prediction, Supervised Local Algori-
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1. INTRODUÇÃO 

 O termo “rede” denota um grupo de objetos que pertencem a uma comunidade interagindo 

entre si. Uma rede pode ser descrita como um composto de nós, ou vértices, que representam os 

objetos, e uma lista de arestas, ou ligações, que representam uma relação entre nós. Este tipo de 

estrutura é representada por um grafo. Há uma grande variedade de sistemas que são modelados 

através desta abordagem na natureza, para diferentes fins. No âmbito mecatrônico, há autores 

[Dudek et al. 1991] que utilizam de grafos como uma abstração do campo físico de exploração de 

robôs, onde os vértices são pontos de localização e estes caminham através de arestas utilizando-

se de algoritmos de exploração. No campo biológico, há exemplos de estudos das propriedades 

dinâmicas de redes formadas pela interação entre proteínas [Li et al. 2004] e modelagem de sis-

temas biológicos para se recuperar informações [Liao et al. 2003]. Além disso, o estudo de redes 

com evolução temporal tem atraído atenção dos cientistas, especialmente as redes sociais, uma 

vez que estas são suficientemente complexas a ponto de permitir o estudo da dinâmica dos meca-

nismos que controlam o sistema [Barabási, Albert-Laszlo et ai. 2002] além das características to-

pológicas e estruturais que regem sua evolução [Kossinets, Gueorgi e Watts 2006]. 

 O problema de predição de links já não é um conceito estranho para o público em geral. 

Especialmente para os usuários de sites de redes sociais e de comércio eletrônico, onde os usuá-

rios se se acostumaram a ver recomendação de amigos [Walter, Frank Edward, Stefano Battiston, 

e Frank Schweitzer] ou produtos [Sarwar, Badrul, et al. 2000]. Outra aplicação interessante é a 

previsão de links de sites, onde os autores construíram um previsor de arestas baseado em mode-

los de cadeia de Markov, criados pelo próprio usuário na sua navegação [Zhu et al. 2002]. 

 Este trabalho descreve um projeto de software na área de predição de links: seus objetivos 

e a forma de se realizar essa tarefa, tanto em alto nível, através da sua modelagem e em baixo ní-

vel. Também se realiza um breve estudo dos algoritmos de predição local e propõe-se uma forma 

de se aumentar sua capacidade preditiva. Na Seção 2 encontra-se a motivação para o projeto, seus 

objetivos, e sua metodologia de desenvolvimento. A Seção 3 aborda o problema de predição de 

links, definindo-o formalmente, revisa os principais índices de avaliação local e propõe uma nova 
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forma de se analisar a predição baseada nos índices que se mostraram mais efetivos, além de a-

presentar testes e resultados para esta nova proposição. Na seção 4 expõem-se os detalhes da pro-

gramação do software, como a utilização do banco de dados e a modelagem do domínio. Por fim 

relatam-se alguns pontos para trabalhos futuros e finaliza-se com a conclusão do projeto. 
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2. DESENVOLVIMENTO 

2.1 Motivação 

O estudo da predição de links está inserido nos ramos da ciência que utilizam grafos para 

a modelagem de seus fenômenos. Um exemplo real do potencial dessa área de pesquisa pode ser 

encontrado no estudo das interações celulares da levedura; segundo Haiyuan et al. (2008) apenas 

vinte por cento destas interações foi mapeada, demonstrando que ainda há uma grande parcela a 

ser descoberta.  

Hoje não há, dentre os principais programas que lidam com redes, funcionalidades que 

contemplem a predição de links. Além disso, dentre as poucas implementações de algoritmos 

preditores (contidas em biblioetacas do software R), o que há disponível só é acessível a quem 

possui conhecimentos de programação, devido à sua interface em baixo nível.  

Outro fator que motiva este trabalho é a baixa eficácia dos preditores locais de links. O 

trabalho de Zhou e Lü (2009), sobre o desempenho de algoritmos que utilizam exclusivamente 

informações dos vizinhos para a predição, indica que há a possibilidade de se melhorar a precisão 

para redes genéricas. De maneira geral, sempre os mesmos algoritmos obtêm os melhores resulta-

dos, variando entre si de acordo com as propriedades particulares de cada grafo. Quando compa-

rado à taxa de acerto destes, como feito por Liben-Nowell et al. (2007), revela-se que estes predi-

tores preveem diferentes links para as mesmas redes, indicando que há informações que alguns 

frameworks conseguem adquirir enquanto outros não. Ou seja, apesar de serem sempre os mes-

mos preditores, as informações utilizadas por cada um não são as mesmas, mostrando que há es-

paço para algum preditor mais genérico extrair todas essas informações. Outra forma de se verifi-

car a possibilidade de melhoria do poder preditivo encontra-se no estudo da importância do peso 

das arestas. Demonstrou-se que o desempenho dos algoritmos pode variar de acordo com o modo 

que estes avaliam o grau de importância das relações, possuindo pontos de maximização da eficá-

cia dos resultados (Lü e Zhou 2011). 
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Além disso, o crescente aumento de artigos relacionados ao problema da predição de links 

também serviu como motivacional para o projeto. A ferramenta Ngram Viewer do Google, que 

realiza buscas de citações em livros, indica que o assunto está em plena ascensão (Figura 1). A 

sua atualidade também indica que há um grande campo a ser estudado, expressando uma oportu-

nidade de descobertas de interesse acadêmico e comercial.  

 

 

Figura 1 - Número de citações em livros segundo o Google Ngram Viewer. 

 

Portanto, dois fatores são primordiais para a motivação deste trabalho; a inexistência de 

um software de predição de links e a baixa eficiência dos algoritmos disponíveis. A baixa eficiên-

cia dos algoritmos já foi comprovada em trabalhos anteriores e as divergências de resultados de 

cada framework indicam que de fato há oportunidades de melhoria. 

 

2.2-Objetivos 

Como objetivos do trabalho têm-se a elaboração de um software capaz de solucionar o 

problema da predição de links automatizadamente e o desenvolvimento de um algoritmo que seja 

capaz de obter um desempenho superior aos atualmente propostos.  

2.7 Metodologia 

 Para a análise do software e sua modelagem utilizaram-se os diagramas UML. O diagrama 

de atividades exemplifica o fluxo e as decisões dinâmicas do sistema. Os casos de uso foram usa-



16 

 

dos para levantar as funcionalidades que serão disponibilizadas ao usuário. Utilizou-se um con-

ceito minimalista para esse projeto, visando dar ao usuário à máxima eficiência com o menor 

número de funcionalidades. Essa abordagem torna o software mais user-friendly, ou seja, com 

maior usabilidade. Em contrapartida tem-se que este acaba apresentando maior nível de comple-

xidade de codificação uma vez que precisa tomar um grande número de decisões próprias.  

O diagrama de componentes demonstra como foi elaborada a organização dos pacotes do 

sistema. 
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Figura 2- Diagrama de Atividades do Programa de Automatização de Predição de Links. 

 

A Figura 2 indica o diagrama de atividades do programa completo. Ao iniciar, este deve 

esperar o usuário importar uma rede persistida na memória do computador, em formato específico 

ou direto do banco de dados. O programa faz uma verificação para garantir que o usuário entrou 

com dados consistentes evitando travamentos. Em seguida o software realiza a predição. O soft-

ware calcula o tamanho do grafo, para verificar se há a possibilidade de se utilizar a memória do 

computador, ou se será necessário persistir os dados em um banco de dados. Depois o software 

caracteriza a rede de acordo com as suas propriedades e seleciona o melhor algoritmo que se apli-

ca àquela configuração. O programa predizas arestas, criando os grafos de treinamento e teste, 

processando o algoritmo escolhido e fazendo verificações de validade do método de acordo com 

as métricas de avaliação. Finalmente o software retorna as informações ao usuário de maneira 

gráfica, caso haja poucos dados, ou textual, se estiverem em grande quantidade. 
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Figura 3 - Diagrama de Casos de Uso do Sistema. 

O software desenvolvido apresenta funcionalidades básicas como importar dados, esco-

lher algoritmo, calcular índice de similaridade, escolher a quantidade de arestas removidas para 

calcular o índice AUC e salvar os dados. Cabe ao programa tomar decisões mais complexas como 

exibir o grafo graficamente ou em forma de tabela, qual algoritmo escolher para realizar a predi-

ção e fazer a computação dos dados em memória virtual ou armazenar em disco rígido. Essa a-

bordagem visa criar uma experiência positiva ao usuário, uma vez que se constitui em algo útil e 
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de fácil utilização. Espera-se que essas funcionalidades supram as necessidades de quem não pos-

sui profundos conhecimentos de tecnologia ou mesmo de predição de links. 

 

Figura 4 - Diagrama de Componentes do Sistema. 

O diagrama de componentes expressa a complexidade exigida ao desenvolvimento do 

software. O software foi projetado para desacoplar a automatização de cada componente de sua 

implementação. Assim este apresenta uma camada acima dos algoritmos, da persistência e da vi-

sualização, para realizar a tomada de decisão deste.  
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3. O PROBLEMA DE PREDIÇÃO DE LINKS 

3.1 Abordagem Matemática 

A abordagem matemática do problema de predição de links foi originalmente formulada 

por Liben-Nowell e Kleinberg (2007), onde uma rede social é representada por G(V,E), sendo E o 

conjunto de arestas composto por e=(u,v), que representa uma aresta formada entre os vértices u e 

v. Para grafos que apresentam evolução temporal atribuiu-se as arestas marcas temporais (times-

tamp) e separamos a rede em dois períodos de tempo diferentes. Se houver múltiplas interações 

consideram-se arestas paralelas. O subgrafo G(t,t’) representa o grafo G restrito a arestas com 

marcas temporais entre t e t’. Na tarefa de predição de links nós podemos selecionar um intervalo 

de tempo de treinamento [t0,t0'] e um intervalo de testes [t1,t1'] (onde t0'<t1) para testar a eficácia 

do método. A lista de arestas presentes no intervalo de treinamento deve estar presente no interva-

lo de testes.  

Outra abordagem foi desenvolvida por Lü e Zhou (2011) para grafos estáticos. Sem a ca-

racterística da evolução temporal o intervalo de treinamento deve ser criado removendo os links 

aleatoriamente do grafo principal. A lista de links observados E deve ser dividido em dois con-

juntos, o de treinamento, E
T
, que contém os links originais menos os removidos (considerado a 

informação conhecida), e o de prova, E
P
, contendo somente os links removidos que serão utiliza-

dos para a predição. É possível observar que E
T
 ∪ E

P
 = E e E

T
 ∩ E

P
 = 0. Os vizinhos de um de-

terminado nó são denotados por Γ(nó) e o seu grau |Γ(nó)|. 

 

3.2 Métricas de Avaliação 

Há duas formas mais utilizadas para a medição de desempenho dos resultados dos algo-

ritmos de predição. Uma é a precisão, que avalia a razão entre os valores verdadeiramente positi-

vos e os verdadeiramente negativos. A outra é a Receiver Operating Characteristic (ROC), que 

avalia graficamente o desempenho sobre a taxa de links verdadeiramente positivos e falsamente 
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positivos. Uma métrica mais conveniente que a bidimensional ROC, muito usada na comunidade 

acadêmica, é a unidimensional Area Under Curve (AUC) [Hanley and McNeil 1982], que é a área 

calculada sob a curva.  

 Para a construção do gráfico ROC, cada aresta contida no vetor calculado deve ser compa-

rada com cada aresta do conjunto de prova de arestas. Se a aresta calculada está contida na lista 

de prova, então é um exemplo verdadeiramente positivo; se não estiver, é um exemplo falsamente 

positivo. A lista de links calculados deve ser ordenada em ordem decrescente de contagem, uma 

vez que o limite máximo indica a origem do gráfico, como indicado por Fawcett (2004). 

 A métrica AUC de um algoritmo ranqueia uma instância positiva aleatoriamente escolhida 

com valor maior que uma instância negativa aleatoriamente escolhida, de acordo com suas pro-

priedades estatísticas (Fawcett 2004). Então é esperado que um link removido receba um score 

maior que um link que não existe. Nesse trabalho utilizou-se a métrica AUC proposta por Hand 

and Till (2001). Essa métrica foi utilizada para determinar a eficácia de cada algoritmo. 

AUC = (S0 – n0*(n0+1) / 2) / (n0*n1), 

onde S0 é a soma de todas as posições de todas as arestas positivas na lista decrescente de resulta-

dos de determinado framework. A variável n0 é o número de arestas positivas, ou seja, o tamanho 

do conjunto de prova, E
P
, e n1 é o número de links negativos, ou seja, o tamanho da lista de resul-

tados menos o tamanho do conjunto de prova. Quanto mais distante de 0,5 for o valor do AUC, 

mais confiável a predição será feita em relação à pura chance. 

 

3.3 Estado da Arte 

Os algoritmos que utilizam a similaridade topológica como característica para prever links 

são basicamente separados em dois grupos, os que utilizam o nó e sua vizinhança para a predição 

e os que utilizam o caminho do grafo (também descritos como índices de similaridade locais e 

globais (Lü et al. 2011)). A grande vantagem dessa abordagem é que os algoritmos são genéricos 

podendo ser aplicados a qualquer tipo de dado em qualquer tipo de domínio, não sendo requisita-

das informações sobre as características da rede modelada [Al Hasan e Zaki 2011].  
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Apesar de o tema predição de links ter sido proposto recentemente por Liben-Nowell et al. 

(2007), o conceito de predizer relações, ou pelo menos propor índices de similaridade em nós, em 

redes já aparecia na literatura em diversos outros formatos. No estudo da evolução temporal das 

colaborações científicas, Newman (2011) demonstrou que as probabilidades de dois colaborado-

res vierem a se relacionar aumenta de acordo com o número de outras colaborações que ambos 

têm em comum. Na área de redes na web, apresentam-se trabalhos que propõe índices quantitati-

vos para avaliar o quão similares são dois nós a partir de suas relações (Adamic e Adar (2003)) 

além de estudos sobre como lidar com similaridade entre páginas da web (Sergey e Page 1998).  

A seguir são apresentados as métricas que utilizam as características topológicas locais do 

grafo para realizar a predição. O termo “algoritmo” é usado para se referir a métricas. 

A métricas apresentadas a seguir são consideradas os mais simples pela comunidade aca-

dêmica, uma vez que utilizam apenas as informações contidas nos próprios nós e seus vizinhos. 

Para cada par de nós é atribuído um valor, chamado de sxy, definido como sendo a similaridade 

entre os nós. Por se tratarem de uma abordagem simplória geralmente obtém resultados inferiores 

a modelos mais complexos, como por exemplo os que utilizam informações globais; porém apre-

sentam custo computacional muito mais baixo visto que necessitam de poucas informações para a 

predição. O objetivo principal dos algoritmos é de dar notas mais altas aos nós mais similares (Lü 

et al. 2011). 

 

3.3.1 – Algoritmos e Códigos 

Common Neighbors: Proposto por Newman (2001), a ideia por trás dessa métrica é de que quan-

to mais vizinhos dois nós tem em comum, mais eles estão propensos a estarem ligados. É notável 

então que essa predição é aplicada para caminhos de comprimento dois. Esta talvez seja o índice 

de similaridade mais simples, uma vez que considera apenas a intersecção entre dois nós para o 

cálculo do score. 

score(x,y) = |Γ(x) ∩ Γ(y)| 

 

Jaccard Coefficient: Esse índice normaliza o score calculado pelo algoritmo Common Neigh-

bors adicionando uma divisão pela união entre os dois nós (Jaccard 1901).   
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score(x,y) = |Γ(x) ∩ Γ(y)| / |Γ(x) ∪ Γ(y)| 

 

Leich-Holme-Newman Index: Esse índice calcula sua similaridade baseado na contagem de vi-

zinhos em comum dividido pela quantidade esperada desses (Leicht, Holme and Newman 2006). 

 

score(x,y) = |Γ(x) ∩ Γ(y)| / |Γ(x)| x |Γ(y)| 

 

Salton Index: Índice muito similar ao anterior, porém aplicando ao denominador a raiz quadrada 

[Salton and McGill 1986]. 

 

score(x,y) = |Γ(x) ∩ Γ(y)| / √|Γ(x)| x |Γ(y)| 

 

Sørensen Index: Ao invés de penalizar baseado na quantidade esperada de vizinhos em comum, 

como o Leich-Holme-Newman, este índice penaliza de acordo com o maior numero possível de 

vizinhos (Sørensen 1948). 

 

score(x,y) = 2*|Γ(x) ∩ Γ(y)| / |Γ(x)| + |Γ(y)| 

 

Hub Promoted Index: Esse índice promove a adjacência a nós centrais, visto que penaliza o 

menor grau entre o par de nós levados em consideração (Ravasz, Erzsébet et al. 2002). 

 

score(x,y) = |Γ(x) ∩ Γ(y)| / min{|Γ(x)|, |Γ(y)|} 

 

Hub Depressed Index: Proposto por Zhou et al (2009) índice igual ao anterior porém com de-

nominador revertido. 

score(x,y) = |Γ(x) ∩ Γ(y)| / max{|Γ(x)|, |Γ(y)|} 

 

Preferential Attachment: Esse algoritmo usa como métrica a esperada quantidade de vizinhos 

que dois nós tem em comum. Usado originalmente em redes evolutivas (Barabási et al. 1999), foi 

adaptado para servir como índice de predição. 
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score(x,y) = |Γ(x)| x |Γ(y)| 

 

Adamic/Adar: O primeiro índice a utilizar a informação específica do vizinho em consideração 

ao cálculo da similaridade. Penaliza os índices com alta quantidade de informações pois estes teo-

ricamente são os menos importantes para futuros relacionamentos (Adamic and Adar 2003). 

 

score(x,y) = ∑z∈Γ(x) ∩ Γ(y) 1 / log |Γ(z)| 

 

Resource Allocation: Análogo ao índice Adamic/Adar, porém penaliza mais severamente aque-

les com grau mais alto (Zhou et al 2009).  

 

score(x,y) = ∑z∈Γ(x) ∩ Γ(y) |Γ(z)| 

 

3.4 Dados Utilizados 

Para o estudo do comportamento dos preditores e as características que influenciam no seu 

desempenho foram utilizadas três redes e cinco características topológicas. Escolheram-se grafos 

advindos da área biológica devido à facilidade em obtê-los. As características topológicas foram 

escolhidas a fim de se capturar os seus diferentes efeitos na predição de links. 

 

Tabela 1. Redes e suas Características Topológicas. 

Rede Nós Arestas Densidade Modularidade Clustering 

Dolphin 62 159 0,084 0,526 0,303 

C. Elegans 297 2148 0,049 0,393 0,308 

Disease 1419 2738 0,003 0,874 0,819 

 

A primeira rede Dolphins, representada na Fig. 5, consiste em uma rede social, com ares-

tas sem direcionamento, das associações frequentes entre 62 golfinhos em uma comunidade vi-
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vendo em Doubtful Sound, Nova Zelândia [Lusseau et al. 2003]. Este gráfico é o menor de todos, 

considerando tanto o número de arestas quanto de nós. No entanto, contém a maior densidade e a 

segunda maior modularidade, demonstrando que este pode apresentar bons resultados para predi-

tores baseados em contagem de vizinhos em comum. O coeficiente de agrupamento (clustering) é 

quase o mesmo das outras duas redes. 

 

Figura 5 - Rede Dolphins. 
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A segunda, representada na Fig. 6, é uma rede dirigida, ponderada representando a rede 

neural de C. elegans. Para fins acadêmicos transformou-a em sem direção e sem peso. O número 

de arestas é alto, comparável com o último grafo, mas com um número muito menor de nós, as-

segurando uma elevada densidade. No entanto, há poucas comunidades como mostrado pela mo-

dularidade, criando um ambiente interessante para testes, uma vez que todos os nós estão separa-

dos em alguns poucos grupos com elevado grau. 
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Figura 6 - Rede C. Elegans. 

 

Mostrada na Fig. 7, a terceira rede é uma rede de genes de doenças e distúrbios ligados por 

conhecidas associações de desordem genética, indicando a origem genética comum de muitas do-

enças. Genes associados com distúrbios semelhantes mostram maior probabilidade de interações 

físicas entre si, e maior expressão de similaridade de perfil, apoiando a existência de módulos 

funcionais específicos de doenças distintas, conforme explicado por Bastian et al. (2009). O ta-



28 

 

manho do grafo é comparável com aos utilizados em estudos prévios de Liben-Nowell e Klein-

berg (2007) e Zhou et al. (2009). A baixa densidade e alta modularidade indicam que os nós estão 

concentrados em comunidades.  

 

Figura 7 - Rede Disease 
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3.5 Experimentos 

Para os experimentos analisou-se o desempenho de algoritmos para responder a questões 

como a forma que a eficácia deles varia de acordo com o número de arestas removidas, e dado o 

melhor conjunto de links removidos, qual algoritmo fornece o maior número de previsões corre-

tas entre os melhores links recomendados. Esta análise é interessante caso procura-se um número 

reduzido de arestas previstas porque, como não se sabe quais serão as arestas futuras, confia-se 

nas ligações mais bem avaliadas. Dois tipos de métricas foram utilizados para realizar os testes, 

ROC e AUC. AUC foi utilizado para comparar a eficiência entre os algoritmos para todos os ní-

veis de ligações retiradas e determinar qual é o melhor algoritmo de predição em determinada 

percentagem de arestas removidas. Todos os valores da AUC foram obtidos a partir de uma mé-

dia aritmética de 100 testes. A comparação aparece nas tabelas variando-se o número de arestas 

removidas dentre metade até 90% das ligações totais. Porém sendo uma medida unidimensional, 

AUC não é capaz de reportar o comportamento preciso da lista de arestas preditas. Para analisar 

quais frameworks dão as melhores previsões para os links mais bem avaliados, ou seja, as liga-

ções com valores mais altos score, devemos analisar a curva ROC. 

 

3.5.1 Resultados 

Na Tabela 2 é possível ver a comparação de todos os preditores para a rede Dolphins. Para 

a coluna de cinquenta por cento de links removidos, a informação não é totalmente confiável, 

uma vez que a melhor previsão é de cerca de quatorze por cento maior do que uma aleatória, tor-

nando-se desaconselhável a predição nesta configuração. Mas é interessante que, mesmo para 

baixa quantidade de dados na rede, o desempenho geral continua sendo maior do que o puro aca-

so. Certamente há uma persistência de informações nesta rede, uma vez que o melhor algoritmo é 

o mesmo para todas as percentagens de ligações removidas. Esse comportamento pode ser res-

ponsabilizado à alta densidade, que mantém a característica topológica dos nós mesmo para uma 

grande retirada dos links. Percebe-se que o desempenho global aumenta significativamente ao 

aumentar os dados para análise do preditor, isto é, diminuindo a percentagem de ligações removi-



30 

 

das, conforme esperado. É possível concluir que para esta rede o algoritmo Hub Depressed apre-

senta o maior poder preditivo, enquanto o Preferential Attachment tem o pior prognóstico. Curio-

samente, o último quase não aumenta o seu desempenho ao longo do teste, mantendo a menor 

eficiência de predição para todas as colunas. 

 

Tabela 2. Comparação do valor AUC para a rede Dolphins para diferentes porcentagens de links retirados. 

% of Links Removidos 50% 40% 30% 20% 10% 

Common Neighbors 0,637 0,674 0,707 0,732 0,746 

Adamic/Adar 0,635 0,673 0,705 0,730 0,747 

Salton Index 0,635 0,667 0,693 0,714 0,729 

Resource Allocation 0,635 0,673 0,705 0,730 0,746 

Jaccards Coefficient 0,636 0,671 0,700 0,720 0,734 

Sorensen 0,640 0,675 0,707 0,731 0,748 

Hub Depressed 0,640 0,675 0,708 0,732 0,748 

Hub Promoted 0,634 0,665 0,690 0,709 0,721 

Leich Holme Newman 0,634 0,665 0,689 0,708 0,721 

Preferential Attachment 0,583 0,588 0,598 0,606 0,599 

Média 0,632 0,664 0,692 0,714 0,726 

 

Na Figura 8 é possível ver graficamente a superioridade do algoritmo Hub Depressed so-

bre o Preferential Attachment. Surpreendentemente para os primeiros nós Preferential Attachment 

tem pior desempenho do que um algoritmo baseado em previsões aleatórias. Enquanto o valor 

AUC só pode medir a eficiência de todas as previsões, o ROC pode dar-nos qual algoritmo obtém 

as melhores previsões para os melhores links avaliados. Na Figura 9 nota-se uma inversão da pre-

cisão da previsão para as primeiras arestas, por isso se alguém pretende escolher somente as ares-

tas mais bem ranqueadas como as corretas é preferível usar Preferential Attachment para esta ta-

refa, mesmo que este apresente uma pontuação AUC menor que o framework Hub Depressed. 
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Figura 8 – A curva ROC para a rede Dolphins com 10% dos links removidos. A mesma curva aparece à direita, com 

a origem ampliada.  A linha preta é o algoritmo Hub Depressed predictor enquanto a verde é o Preferential Attach-

ment. O algoritmo aleatório é definido pela linha vermelha. 

 

Figura 9- A curva ROC para a rede Dolphins com 50% dos links removidos. A mesma curva aparece à direita, com a 

origem ampliada. A linha preta é o algoritmo Hub Depressed predictor enquanto a verde é o Preferential Attachment. 

O algoritmo aleatório é definido pela linha vermelha. 

 

A Tabela 3 consiste na mesma análise, mas para a rede de C. elegans. Há claramente dois 

algoritmos proeminentes para esta rede, Adamic / Adar e o Resource Alocation. Embora o pri-

meiro não tenha sido o melhor para o grafo anterior (embora tenha chegado perto), no segundo 

pode-se ver o potencial do framework. Há alguns empates técnicos entre os dois algoritmos para 

algumas porcentagens específicas de links removidos, mas o maior peso dado aos nós populares 

pelo algoritmo Resource Allocation acaba por torná-lo mais eficiente. Como na Tabela 2, é pos-

sível verificar o fenômeno de aumentar a precisão quando se aumenta o número de arestas no gra-

fo de treinamento. Também é verificável a inferioridade de previsão de algoritmos baseados em 
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vizinhos comuns para os baseados no conceito Adamic/Adar, graças às propriedades de agrupa-

mento da rede, como discutido por Zhou et al (2009). Mais uma vez Preferential Attachment é o 

indicador com menor perda de precisão quando removido uma grande quantidade de dados a par-

tir do grafo original, indicando uma propriedade desse indicador. 

 

Tabela 3. Comparação do valor AUC para a rede C. Elegans para diferentes porcentagens de links retirados. 

% of Links Removidos 50% 40% 30% 20% 10% 

Common Neighbors 0,714 0,756 0,787 0,813 0,833 

Adamic/Adar 0,726 0,771 0,804 0,830 0,852 

Salton Index 0,701 0,731 0,751 0,770 0,788 

Resource Allocation 0,726 0,772 0,806 0,832 0,853 

Jaccards Coefficient 0,690 0,720 0,737 0,752 0,765 

Sorensen 0,691 0,724 0,745 0,765 0,782 

Hub Depressed 0,691 0,721 0,740 0,757 0,771 

Hub Promoted 0,707 0,740 0,761 0,780 0,796 

Leich Holme Newman 0,690 0,708 0,713 0,717 0,718 

Preferential Attachment 0,727 0,732 0,735 0,739 0,740 

Média 0,708 0,741 0,762 0,781 0,795 

 

As próximas duas figuras mostram como os valores AUC analisados isoladamente podem 

não ser interessantes. A Figura 10 revela o desempenho abaixo do esperado dos preditores Leich 

Holme Newman quando analisado somente as arestas mais bem ranqueadas. Mesmo tendo um 

valor AUC (ou seja, a área sobre a curva) maior que 0,5 este não obtém um desempenho melhor 

do que um algoritmo puramente aleatório. Essa figura também confirma a superioridade do algo-

ritmo Adamic/ Adar, pois curva deste é acima das outras para quase todo o gráfico. Na Figura 11 

há outra revelação interessante. De acordo com AUC, a predição Preferential Attachment apre-

senta um desempenho melhor do que Adamic / Adar, mas especialmente para as arestas mais bem 

avaliadas, Adamic/Adar desempenha muito melhor, indicando superioridade da precisão a partir 

deste ponto de vista. 
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Figura 10 - A curva ROC para a rede C. Elegans com 10% dos links removidos. A mesma curva aparece à direita, 

com a origem ampliada. A linha azul é o algoritmo Adamic/Adar, a verde é o Preferential Attachment e a amarela é 

o Leich Holme Newman. O algoritmo aleatório é definido pela linha vermelha. 

 

Figura 11 - A curva ROC para a rede C. Elegans com 50% dos links removidos. A mesma curva aparece à direita, 

com a origem ampliada. A linha azul é o algoritmo Adamic/Adar, a verde é o Preferential Attachment e a amarela é 

o Leich Holme Newman. O algoritmo aleatório é definido pela linha vermelha. 

 

Na Tabela 4, apresentam-se os resultados para a rede Disease. Para as duas maiores quan-

tidades de dados disponíveis para realizar a predição (ou seja, as duas últimas colunas) há um 

empate entre dois preditores. Adamic / Adar e Resource Allocation. 
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Tabela 4 - Comparação do valor AUC para a rede Disease para diferentes porcentagens de links retirados. 

% of Links Removidos 50% 40% 30% 20% 10% 

Common Neighbors 0,756 0,807 0,845 0,874 0,899 

Adamic/Adar 0,757 0,808 0,846 0,875 0,900 

Resource Allocation 0,757 0,808 0,846 0,875 0,900 

Preferential Attachment 0,661 0,665 0,664 0,663 0,663 

Jaccards Coefficient 0,788 0,824 0,852 0,874 0,896 

Sorensen 0,766 0,810 0,844 0,872 0,895 

Hub Depressed 0,766 0,810 0,844 0,872 0,895 

Hub Promoted 0,656 0,688 0,715 0,741 0,766 

Leich Holme Newman 0,655 0,687 0,715 0,739 0,764 

Salton Index 0,656 0,688 0,715 0,741 0,766 

Média 0,725 0,764 0,794 0,818 0,841 

 

 Comparando todas as tabelas, é possível verificar algumas características gerais da previ-

são de link. Uma vez que a coluna com o maior número de arestas apresenta o índice AUC mais 

elevado, fica evidente que quanto maior o número de informações no gráfico melhor é a predição. 

Além disso, quanto menor for a remoção de arestas, maior será o desempenho dos algoritmos. 

Assim a análise do desempenho é fortemente influenciada pelo número de arestas removidas, 

uma vez que os melhores algoritmos para cada rede variaram para diferentes porcentagens de 

links removidos, o que pode levar a conclusões erradas de desempenho se não for considerado o 

ponto correto de porcentagem de links retirados. A surpresa foi a métrica Preferential Attach-

ment, com a menor variação percentual de desempenho, em torno de 2% para todas as redes, o 

que lhe permitiu ser o indicador mais confiável quando o gráfico contém poucas informações en-

quanto outros preditores perdem vigorosamente a qualidade de precisão. 
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3.6 Algoritmo Proposto 

O algoritmo proposto deve seguir algumas regras para se encaixar no subgrupo de predito-

res de links através de características locais. Devido à natureza desse tipo de índice de similarida-

de, o algoritmo não deve usar qualquer informação estrutural que a rede contenha, como menor 

distância entre dois nós ou a qualidade dos nós baseado em quantas ligações este recebe através 

da rede (Sergey e Page 1998). O framework também deve se basear em dados estritamente per-

tencentes a cada par de nós, como características de vértices em comum, por exemplo.  

 O fato de se utilizar de dados locais não impede que o algoritmo proposto baseie-se em 

estender a ideia de se utilizar informações topológicas. Algoritmos probabilísticos, por exemplo, 

baseiam sua predição em modelos que são construídos a partir da abstração da estrutura do grafo 

(Lü e Zhou 2011). Outra forma de se extrair a informação de redes e adaptá-la para uma função é 

através de algoritmos supervisionados. Apesar de terem grande potencial preditivo, pois estes 

conseguem moldar-se de acordo com as diferentes características do grafo, ainda são pouco estu-

dados. Há relatos de benchmark entre os principais algoritmos supervisionados para a predição de 

links (Al Hasan et al. 2006), porém há poucas publicações a respeito de frameworks que foram 

feitos exclusivamente para o problema de predição de links. 

 

3.6.1 Características da Predição Local 

 

Os algoritmos de predição local são basicamente divididos em três grupos menores: os 

que utilizam a contagem de nós relacionados entre dois elementos, os que utilizam as característi-

cas do nó relacionado e os que utilizam simplesmente as características dos nós analisados. O 

primeiro grupo, representado pelo algoritmo Common Neighbor e seus variantes, utiliza-se como 

índice de similaridade o número de nós que são comuns aos dois vértices analisados, baseando-se 

na ideia de que quanto mais elementos em comuns há entre dois nós, maior é a probabilidade des-

tes estarem ligados. O segundo grupo, representado por Adamic/Adar, considera como índice de 

similaridade as características topológicas dos nós em comum. Por fim, o último grupo ignora 

totalmente a informação de relacionamento em comum entre dois nós e considera apenas o núme-
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ro de relacionamentos totais entre estes. Neste grupo há apenas um algoritmo, o Preferential Atta-

chment. Na Figura 12 mostra-se, para os dois principais algoritmos citados, Common Neighbors 

e Adamic/Adar, a relação de nós em comum e a valorização destes no cálculo do índice de simila-

ridade. 

 Os dois grupos que demonstraram uma maior capacidade preditiva servirão de base para o 

algoritmo a ser proposto. Dentro destes, emulara-se aqueles algoritmos que apresentaram boa ca-

pacidade preditiva. Segundo os testes propostos, os frameworks Common Neighbors e Ada-

mic/Adar, de modo geral, apresentaram bons resultados. Considerando-se todos os resultados, 

esses quando não foram os melhores preditores, ficaram próximos a eles. A métrica utilizada por 

ambos está representada na Figura 12. 

 

 

Figura 12 - Comparação entre Índices de Similaridade dos Algoritmos Common Neighbors e Adamic/Adar. 

  

A ideia por trás do novo algoritmo é que ele contém as propriedades dos dois algoritmos 

citados, podendo adaptar-se às características do grafo convenientemente. Para que isso fosse 

possível adaptaram-se as propriedades de predição dos dois algoritmos em um novo e adiciona-

ram-se constantes para que este fosse capaz de se modificar até alcançar a máxima eficiência.  

score(x,y) = ∑z∈Γ(x) ∩ Γ(y) |Γ(z)| ^A / log |Γ(z)| ^B 

 Com essa fórmula nós temos embutido as características dos algoritmos do Common Nei-

ghbors e do Adamic Adar. Os expoentes dos termos servem para criar uma fórmula adaptável ao 

grafo de modo supervisionado. Percebe-se que o algoritmo proposto simula fielmente o Common 
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Neighbors quando ambas constantes valem zero e simula o Adamic Adar quando A vale zero e B 

vale um.  

 

Figura 13- Característica da predição dos quatro algoritmos gerados. No canto superior esquerdo temos o gráfico 

para A maior que zero e B maior que zero. No canto superior direito temos A maior que zero e B menor. No canto 

inferior esquerdo temos A menor que zero e B maior que zero. No canto inferior direito temos A e B menores que 

zero. 

 

 Analisando-se as características de predição para o algoritmo proposto percebe-se que há 

quatro grandes grupos presentes. O primeiro, indicado na Figura 13, no canto superior esquerdo, 

indica que o algoritmo procura valorizar os nós com maiores números de amigos em detrimento 

dos com poucos amigos. Nota-se que o algoritmo que surge ao utilizarem-se valores de A maior 

que zero e B menor que zero é exatamente o oposto. Para a métrica no canto inferior esquerdo, 

nota-se que há a valorização de nós com poucos relacionamentos, porém sem aumentar a valori-

zação ao longo do aumento de ligações. Por fim, a curva que surge ao definirmos A menor que 

zero e B menor que zero, apresenta um relacionamento oposto à penúltima curva.  

 

3.6.2 Experimentos 

 Os testes realizados visaram analisar o comportamento da predição de links para um am-

plo espectro de valores para o algoritmo proposto. Calcularam-se os valores de AUC percorrendo 
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um espaço quadrado variando-se tanto a constante A quanto a B de -50 até +50, realizando-se um 

número de testes em cada ponto o suficiente para reduzir o desvio padrão a valores efetivos para 

o teste. Os grafos utilizados foram os explicados na seção 3.4, porém, diferentemente dos testes 

da seção 3.5, foram retirados apenas 10% dos links totais. 

 Os resultados da rede Dolphins estão expressos na Figura 14. A característica marcante 

desse resultado é que há dois tipos de algoritmos quando analisado a capacidade preditiva. Na 

parte superior estão os menos eficientes, em especial os que apresentam A maior que zero e B 

menor que zero os quais valorizam apenas os nós com poucos relacionamentos e desvaloriza os 

com elevado número de relacionamentos, enquanto os com melhor poder preditivo são aqueles 

que valorizam os nós com poucos relacionamentos, porém desvalorizam de forma menos aguda 

os que possuem muitas arestas. Nota-se que estes estão divididos através de uma linha que con-

tém os algoritmos com maior capacidade preditiva.  

 

 

Figura 14 – Gráficos em 3D e 2D contendo os valores AUC para o algoritmo proposto para o grafo Dolphins. 

 

Os quadrantes que apresentam os maiores valores para predição, contidos nos quadrante 

inferior esquerdo e superior direito, tem-se dois tipos distintos de algoritmos com um desempe-

nho satisfatório. Dentre estes dois, é no primeiro quadrante que se encontra o algoritmo mais fa-

vorável à predição. Este algoritmo, representado na Figura 15, apresenta características que não 

são emuláveis por nenhum outro proposto. Este dá notas altíssimas aos nós com maior número de 
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relacionamentos, característica dos algorimos que venceram nos testes anteriores, como o Hub 

Depressed. É notável também que por possuir características tão distintas este apresenta um poder 

de predição muito superior aos outros algoritmos. Entretanto, o algoritmo que apresenta menor 

poder de predição está no quadrante superior esquerdo, quando B vale -22 e Y vale 28. Esse algo-

ritmo é basicamente o Adamic Adar distorcido para haver menos variação de índice entre as dife-

rentes quantidades de nós. Nota-se então, que os algoritmos utilizados até aqui nos trabalhos aca-

dêmicos, por sua natureza não supervisionada, não são capazes de predizer com a eficiência total 

que o grafo é capaz de fornecer.  

 

 

Figura 15 – Gráfico que representa a métrica de predição ideal para o grafo Dolphins. 

 

Na Figura 15 temos o resultado do desvio padrão para o grafo Dolphins. Nota-se que o 

ponto onde ocorre o desvio padrão está uma casa decimal abaixo da diferença de valores do me-

lhor algoritmo da literatura e do algoritmo proposto, demonstrando-se a validade do teste. 
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Figura 16– Desvio padrão para cada valor de A e B realizado para o teste para o grafo Dolphins. 

 Na Tabela 6 demonstrou-se a eficiência do algoritmo proposto. Nesses resultados expos-

tos encontram-se os valores para o algoritmo Adamic/Adar e o vencedor dos testes Hub Depres-

sed. O algoritmo proposto demonstra claramente um poder preditivo muito maior quando compa-

rado aos outros dois.  

 

Tabela 3- Valores AUC para os principais algoritmos para o grafo Dolfins com 10% das arestas removidas. 

% of Links Removidos 10% 

Adamic/Adar 0,747 

Hub Depressed 0,748 

Algoritmo Proposto 0,783 

 

 

Os mesmos testes foram realizados para o grafo C.Elegans. Na Figura 17 vê-se o resultado 

em 3D, enquanto na Figura 18 o mesmo resultado é expresso em duas dimensões. Identificou-se 

para este grafo o mesmo comportamento do anterior, ou seja, a existência de duas regiões distin-
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tas de predição. E, assim como para o grafo Dolphins, os algoritmos que apresentaram o melhor 

resultado estão no terceiro e quarto quadrante do grafo, separados desta vez por uma linha menos 

inclinada, porém qualitativamente de mesmo formato. Outro ponto de convergência entre os tes-

tes foi a localização do algoritmo mais eficiente. Apesar de não estarem sobre o mesmo ponto, 

como era de se esperar, pois cada grafo possui suas próprias características, estão no mesmo local 

relativo em relação aos gráficos, pois o ponto máximo encontra-se logo após a transição entre o 

patamar de baixo poder preditivo e o de alto poder preditivo. 

 

 

Figura 17 – Gráfico 3D do resultado do teste de score para o grafo C.Elegans. 
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Figura 18 – Gráfico 3D do resultado do teste de score para o grafo C.Elegans. 

 

Na Figura 19 prova-se que o resultado do teste é válido matematicamente, visto que o 

desvio padrão para o ponto de máximo do gráfico está uma casa decimal abaixo do índice de di-

vergência entre o melhor algoritmo o algoritmo proposto. 
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Figura 19 - Desvio padrão para cada valor de A e B realizado para o teste para o grafo Dolphins. 

  

Na Tabela 7 demonstrou-se a eficiência do algoritmo proposto. Nesses resultados expos-

tos encontram-se os valores para o algoritmo Adamic/Adar e o vencedor dos testes Resource Al-

location. O algoritmo apresenta um desempenho inferior quando comparado ao grafo Dolphins, 

porém ainda apresenta um poder preditivo superior aos algoritmos já relatados. 

 

Tabela 4 - Valores AUC para os principais algoritmos para o grafo C.Elegans com 10% das arestas removidas 

% of Links Removidos 10% 

Adamic/Adar 0,833 

Resource Allocation 0,853 

Algoritmo Proposto 0,867 
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4. SOFTWARE 

4.1 Componente de Memória 

O componente de memória do software foi projetado para ser tanto flexível a grandes 

quantidades de dados como para alto desempenho em baixa quantidade de dados. Na Figura 20 

demonstram-se as diferenças entre as duas abordagens, em termos quantitativos. Enquanto que 

para um baixo número de nós a abordagem mais indicada é a manutenção dos dados em memória 

volátil, conforme o número de elementos cresce há a necessidade de uma maneira mais eficiente e 

mais robusta para o tratamento destes. Além disso, devido à natureza do problema de predição de 

links, necessita-se haver a persistência de dois grafos simultâneos, ainda que logicamente apenas 

através de alteração das propriedades dos nós e arestas, um relacionado ao instante anterior ao de 

predição e um representando o período de testes, aumentando os requisitos de software. 

 

 

Figura 20 - Quantidade de Dados e sua Abordagem de Persistência. 

  

Para este projeto abordou-se a solução de alocação de memória virtual para grafos peque-

nos e para grandes quantidades de nós buscou-se soluções que suportam maiores volumes, como 

a persistência em disco rígido através de banco de dados baseado em grafos porque se espera que 

o programa tenha a máxima escalabilidade possível.  
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4.2 Banco de Dados Baseado em Grafos 

 Os bancos de dados relacionais se tornaram peças fundamentais de sistemas de informa-

ção nos últimos anos. Sua força pode ser vista a partir da grande oferta de produtos de diferentes 

empresas, em particular de gigantes da tecnologia. Essa vitalidade deveu-se a eficiência em se 

modelar dados através de relações e entidades e também por apresentar uma linguagem unificada 

e eficiente. Porém, esse tipo de bancos de dados apresenta a inabilidade de se adaptar a mudanças 

no domínio, pois este é modelado a partir de dados fixos e bem mapeado, ou seja, apresenta baixa 

escalabilidade. Assim, em áreas onde a topologia das informações e sua interconectividade é mais 

importante que o domínio por si só, esse tipo de abordagem pode não ser a mais eficiente. 

 O surgimento de banco de dados baseados em grafos foi visto como uma forma de se re-

presentar mais facilmente dados que não apresentam uma estrutura lógica tão rígida. Esse tipo de 

banco armazena qualquer tipo de estrutura de dados na forma de grafos de maneira completamen-

te genérica, deixando a modelagem a cargo do engenheiro de software. Essa modelagem é facili-

tada especialmente para a necessidade de se persistir informações que apresentam relacionamen-

tos mutáveis ou adaptáveis durante o tempo. Também se deve considerar a diferença entre os ob-

jetos de modelagem para desta abordagem. Diferentemente de banco de dados relacionais, aqui o 

domínio apresenta características em relação a uma particular entidade e suas ligações, como por 

exemplo, propriedades específicas de cada elemento ou a presença de vizinhos diretos que visam 

somente atribuir características mutáveis. 

 Portanto, devido aos requisitos de memória necessários escolheu-se a utilização de banco 

de dados. Entretanto, diferentemente de aplicações usuais que utilizam banco de dados relacio-

nais, a elevada diferença de domínios utilizados e as necessidades específicas de se realizar pes-

quisas em torno de nós e links, escolheu-se o banco de dados baseado em grafos. Além disso, 

também se considerou a maior eficiência destes quando realizado querys de busca através de seus 

nós. Segundo Vicknair et al. (2010) o banco Neo4J apresenta uma vantagem de tempo muito su-

perior ao banco relacional MySQL. A Tabela 2 deste trabalho indica o potencial de um banco de 

dados baseado em grafos para o problema de predição de links. Nas colunas que demonstram os 

resultados para buscas em profundidade quatro e zero em um conjunto de nós entre mil e um mi-
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lhão, a velocidade de busca do banco de dados Neo4J mostrou-se muito mais rápida em quase 

todos os casos (exceto por um). 

4.3 Escolha do Produto 

 Os critérios para a escolha do banco de dados de grafos dentre os que estão disponíveis no 

mercado foram tanto de ordem objetiva quanto subjetiva. Objetivamente deseja-se um produto 

que apresente alta eficiência, que seja grátis (se possível software livre, pois assim há a possibili-

dade de se ter uma comunidade mais ativa), visto que o projeto não tem financiamento, e, por 

fim, facilidade de utilização; particularmente suporte a tecnologia Java foi um diferencial nesse 

quesito por ser a linguagem do projeto e também vista no curso. As métricas subjetivas conside-

radas foram nível de maturidade da tecnologia, uma vez que softwares mais recentes estão mais 

suscetíveis a erros e uma rede de utilização ampla, visto que a ideia é disponibilizar o programa 

para a comunidade. 

 Foram analisados para os principais produtos encontrados, Neo4J, HyperGraphDB, Oracle 

NoSQL Database EE e DEX, uma série de critérios considerados objetivos. Um benchmark entre 

alguns desses bancos demonstrou que DEX e Neo4J são os mais eficientes do mercado (Domin-

guez-Sal 2010). Todos os testes foram realizados utilizando as interfaces Java do banco, o que 

torna o teste alinhado com os objetivos deste projeto. Os testes foram realizados dentro da escala 

de nós que se pretende utilizar nesse trabalho, mil, três mil e um milhão com o número total de 

objetos (nós e arestas) variando de dez mil até mais de nove milhões. Para grandes quantidades de 

artefatos apenas os bancos Neo4J, DEX e Jena conseguiram realizar a carga inicial. Mas mesmo 

assim, para a maior quantidade de dados Jena se mostrou incapaz de obter desempenho satisfató-

rio. Dentre os produtos DEX e Neo4J, vê-se um desempenho mais interessante do primeiro na 

realização da inserção de dados (Kernel 1), na busca por subgrupos de arestas (Kernel 2) (este 

teste, porém não é interessante para esse trabalho, visto que aqui realizamos apenas a procura por 

nós). Para o teste mais significativo para a aplicação de predição de links através de característi-

cas topológicas locais, o Kernel 3, os resultados foram favoráveis ao Neo4J. Para pequenas quan-

tidades de nós há praticamente um empate técnico entre todos os bancos, porém o Neo4J escala 

melhor para valores elevados de nós. Além disso, o este também apresenta como vantagem (me-

nos significativa) a criação de dados com menor memória alocada. Assim, para o quesito de de-
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sempenho o banco Neo4J foi considerado o produto ideal para este trabalho. A necessidade de se 

utilizar um software livre gerou grandes restrições ao problema. Considerando-se os quatro ban-

cos listados apenas o HypergraphDB é cem por cento de graça. O fabricante de DEX fornece uma 

versão ultraleve que serve apenas para testes. O Neo4J apresenta uma versão para a comunidade, 

porém sempre anterior ao estado da arte do software assim como o banco de dados da Oracle. De 

acordo com essa restrição, o único banco retirado de hipótese foi o DEX. O último requisito ne-

cessário considera a integração do banco com a tecnologia Java (ou seja, facilidade de integração 

ao projeto). Dos bancos remanescentes, Neo4J e HypergraphDB, nenhum apresentou problemas 

de conectividade com aplicações em Java. 

 Para os critérios subjetivos verificou-se que a colocação no mercado do produto acaba 

sendo resultado de um produto maduro e muito aplicado. Segundo o site http://db-

engines.com/en/ranking_trend/graph+dbms hoje o banco líder de mercado é o Neo4J, o qual su-

pre todas as necessidades subjetivas analisadas. 

 

Figura 21 - Comparação de Popularidade dos Bancos de Dados  

  

Portanto, segundo as analises feitas, tanto objetiva, como subjetiva, resultaram na escolha 

do banco de dados baseado em grafos Neo4J. 

http://db-engines.com/en/ranking_trend/graph+dbms
http://db-engines.com/en/ranking_trend/graph+dbms
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4.4 Características do Banco de Dados Neo4J 

 Neo4j é um dos mais populares bancos de dados baseados em grafo da atualidade em pro-

dução desde 2013, com licença livre e comercial, escrito totalmente em Java e open source. Esse 

produto apresenta algumas características interessantes para esse projeto, como o suporte a grafos 

genéricos, através da possibilidade de se realizar ligações extras a um determinado nó e a capaci-

dade de atribuir características a qualquer elemento do grafo em qualquer instante, tornando-o 

uma ferramenta versátil e interessante para a predição de links. Além disso, devido a sua própria 

implementação, possui uma alta afinidade com a linguagem Java, contendo mais de uma API de 

acesso aos dados persistidos, sendo que cada uma possui características únicas para a escolha de 

sua utilização. 

4.5-Estrutura de Dados em Memória Volátil 

 Para pequenos grafos, de até dois mil nós, dependendo da memória RAM disponível, uma 

alternativa é a utilização de estruturas de dados que mantenham todo o grafo em memória volátil. 

A utilização dessa abordagem tem a vantagem de se beneficiar da velocidade com que essa me-

mória trabalha, muito superior ao disco rígido, diminuindo o tempo computacional gasto com os 

cálculos. Para essa abordagem utilizou-se a tecnologia JgraphT. Este framework implementa efi-

cientemente uma estrutura de grafos de forma genérica com a capacidade de se adicionar proprie-

dades aos elementos.  

 

public class CacheDataBase implements DataBase { 
 
 private static Graph<String, DefaultEdge> instance = new SimpleGraph<String, DefaultEd-
ge>(DefaultEdge.class); 
 
 public static Graph<String, DefaultEdge> getInstance() { 
  return instance; 
 } 
 
 @Override 
 public void createNode(String label) { 
  instance.addVertex(label); 
 } 
 
 @Override 
 public void createRelationship(String firstNodeId, String secondNodeId) { 
  instance.addEdge(firstNodeId, secondNodeId); 
 } 
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 @Override 
 public void createNodesFriendsProperty() { 
  Set<String> firstNode = instance.vertexSet(); 
  Set<String> secondNode = instance.vertexSet(); 
 
  for (String first : firstNode) { 
   for (String second : secondNode) { 
    Set<DefaultEdge> edges = instance.getAllEdges(first, second); 
    int size = edges.size(); 
 
    instance.addVertex(first + second); 
    instance.addEdge(first, String.valueOf(size)); 
   } 
  } 
 
 } 
 
 @Override 
 public List getAllNodes() { 
  return (List) instance.edgeSet(); 
 } 
 
 @Override 
 public List neighborsOf(String id) { 
  List neighbors = Graphs.neighborListOf(instance, id); 
  return neighbors; 
 } 
 
 @Override 
 public void clear() { 
  instance = new SimpleGraph<String, DefaultEdge>(DefaultEdge.class); 
 } 
 
} 

4.6-Modelagem 

 A modelagem para a persistência em forma de grafo considera como elementos para a 

persistência as entidades participantes no domínio e o relacionamento entre elas. Apesar de o 

problema de predição de links não apresentar uma alta variedade de tipos de nós e relacionamen-

tos, alguns cuidados em relação à modelagem podem ser tomados a fim de se diminuir o tempo 

computacional dos cálculos. Basicamente há a existência de um tipo de nó genérico e um tipo re-

lacionamento bidirecional entre esses, uma vez que o banco exige direcionamento das arestas. 
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Figura 22 - Rede Exemplo da Modelagem 

Porém, esse domínio pode ser estendido visando facilitar o cálculo da predição de relacio-

namentos. A adição de entidades ou propriedades visando expressar quantitativamente as princi-

pais características topológicas necessárias para a predição, como o número de vizinhos de de-

terminado nó utilizado, por exemplo, em algoritmos como Adamic/Adar, pode trazer elevados 

benefícios computacionais quando considerado o cálculo de grande volume de dados, uma vez 

que o custo de se buscar por um nó é inferior ao de se buscar por todos vizinhos. 
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Figura 23 - Rede Exemplo Estendida para Facilitar a Predição de Links 

Outro fator necessário para haver a predição, e que é diretamente impactante na modela-

gem do banco, é a necessidade de haver dois instantes temporais das entidades do domínio. A 

persistência de mais de um grafo (no caso da predição seria o de aplicação do algoritmo e de vali-

dação) torna-se inviável quando tratado grandes volumes de dados.  Assim, assumindo-se essa 

requisição, modelam-se as arestas com propriedades características para representação temporal, 

como timestamps, ou cria-se uma propriedade booleana associada às arestas visando indicar a 

qual dos dois períodos aquela entidade está inserida, ou seja, uma propriedade visando identificar 

se a aresta pertence ao instante temporal de teste ou de validação. No caso desse trabalho adicio-

nou-se a propriedade booleana “removed” para indicar se a aresta está logicamente removida (pe-

ríodo de testes) ou não (período de validação).  
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Figura 24 - Rede Exemplo Demonstrando a Modelagem do Período de Testes e Validação 

4.7-Core API 

O banco Neo4J apresenta uma boa variedade de interfaces para a recuperação de informa-

ções. São três formas de se relacionar com o banco sendo que todas possuem uma API em java. 

Essas interfaces apresentam diferenças em relação à linguagem de acesso ao banco, ao desempe-

nho computacional e a forma de se realizar o acesso. Na Figura 25 representam-se estas APIs co-

mo uma pilha de blocos onde o mais acima se preza pela expressividade e o mais abaixo pela 

precisão.  
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Figura 25 - Pirâmide de Frameworks do Neo4J 

 

A primeira delas, a Cypher Query Language, é a linguagem de mais alto nível para se co-

municar com o banco. Essa linguagem é a representação adaptada, para a forma de grafos, do 

SQL dos bancos de dados relacionais. Por estar em alto nível apresenta características interessan-

tes ao desenvolvedor, como alta legibilidade, por exemplo, o que torna suas querys facilmente 

entendíveis mesmo por quem não é profundo conhecedor da linguagem. Porém esse nível de abs-

tração vem com um alto custo de desempenho (Liben-Nowell et al. 2007), o retorno de resultados 

é em média muito mais lento que outras interfaces que acessam diretamente o domínio. Como 

esse projeto visa a maior eficiência possível para o cálculo de predição de links, escolheu-se a 

API de mais baixo nível possível. A mais próxima possível do banco, a Kernel, não está comple-

tamente disponível aos usuários, visto que apenas o tratamento de eventos nas entidades é passí-

vel de utilização. A interface Core contém os tipos primitivos do banco, como nó, relacionamen-

tos e propriedades. Por se tratar de uma API de baixo nível, teoricamente, o banco não precisa 

avaliar nenhuma condição de pesquisa, assim a linguagem de programação consegue acessar dire-

tamente os dados persistidos. Devido a essa abordagem o desempenho depende diretamente da 

qualidade da programação de acesso aos dados.  A seguir demonstra-se uma simples implementa-

ção nesta API para demonstrar sua efetividade em se conectar ao banco. 
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4.8 Teste da API do Neo4J– Algoritmo Common Neighbors 

  Para exemplificar a utilização do banco de dados para a predição de links demonstrar-se-á 

a implementação do algoritmo Common Neighbors utilizando-se a Core API. Este algoritmo par-

te da simples ideia que dois nós aumentam sua probabilidade de estarem conectados conforme 

seu número de nós em comum aumenta. Implementou-se este da forma mais simplificada possí-

vel visando-se a didática dessa explicação e não a mais eficiente computacionalmente. Nota-se 

que o cálculo deste algoritmo é feito elevando-se a matriz simétrica de arestas de um determinado 

nó ao quadrado. Porém, visando evitar o alto custo computacional dessa abordagem, aqui iremos 

simplesmente percorrer os relacionamentos de dois nós no banco de dados e conferir se há ele-

mentos em comum.  

 
public class CommonNeighbors implements Strategy { 
 
    @Override 
    public Map<String, Double> calculate(DataBase instance) { 
 
        Map<String, Double> map = new HashMap<String, Double>(); 
 
        Iterable<Node> nodes = instance.getAllNodes(); 
 
        for (Node firstNode : nodes) { 
    
        List<Node> firstNodeFriends = instance.neighborsOf(String.valueOf(firstNode.getId())); 
 
        for (Node secondNode : nodes) { 
            if (secondNode.getId() <= firstNode.getId()) { 
            continue; 
            } 
 
        List<Node> secondNodeFriends = instance.neighborsOf(String.valueOf(secondNode.getId())); 
 
        int commonFriends = CollectionsUtil.compare(firstNodeFriends, secondNodeFriends); 
 
        map.put("(" + firstNode.getId() + " : " + secondNode.getId() + ")", (double) commonFriends); 
 
        } 
 
    } 
 
    return map; 
} 
 
  @Override 
 public List<Node> getAllNodes() { 
  Transaction tx = getInstance().beginTx(); 
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  List<Node> nodes = new ArrayList<Node>(); 
 
  try { 
 
   Iterable<Node> allNodes = GlobalGraphOperati-
ons.at(getInstance()).getAllNodes(); 
    
   for (Node node : allNodes) { 
    nodes.add(node); 
   } 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
  return nodes; 
 }   
 
 @Override 
 public List<Node> neighborsOf(String id) { 
 
  Transaction tx = getInstance().beginTx(); 
 
  List<Node> friends = new ArrayList(); 
 
  Node node = getInstance().getNodeById(Long.valueOf(id)); 
 
  try { 
 
   for (Relationship relationship : node.getRelationships()) { 
 
    Node friend = relationship.getStartNode(); 
 
    if (friend.equals(node)) { 
 
     friend = relationship.getEndNode(); 
 
    } 
 
    friends.add(friend); 
 
   } 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
  return friends; 
 
 } 
 

A resposta desse programa para o banco de dados inicializado no exemplo anterior daria 

como saída: 
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Creating Nodes ... 
 
Creating Relationships ... 
 
Creating Friends Property ... 
 
{(3 : 6)=1.0, (3 : 7)=0.0, (1 : 6)=0.0, (3 : 5)=0.0, (4 : 5)=0.0, (2 : 7)=0.0, (6 : 7)=0.0, (4 
: 6)=1.0, (2 : 6)=1.0, (2 : 5)=0.0, (4 : 7)=0.0, (1 : 5)=3.0, (1 : 7)=1.0, (1 : 4)=0.0, (3 : 
4)=2.0, (5 : 6)=0.0, (1 : 2)=0.0, (1 : 3)=0.0, (2 : 3)=2.0, (5 : 7)=0.0, (2 : 4)=2.0} 
 
Shutting down database ... 
 
 

4.9 Tipos de Grafos 

 Os formatos de representação de grafos são os mais variados possíveis. O grande número 

de propriedades que um grafo pode possuir permitiu que, ao longo do tempo, fossem desenvolvi-

dos diferentes tipos de formas de serem armazenados, conforme as necessidades de cada softwa-

re. Cada tipo visa solucionar uma necessidade específica, desde representar uma matriz de adja-

cência até grafos que contém tipos complexos contendo informações como, peso de arestas e po-

sicionamento do elemento (nós) na tela. Infelizmente essa situação criou uma impossibilidade de 

um software conseguir suportar todos os tipos possíveis de extensões, o que levou a escolha de 

formatos específicos para a utilização do programa. 

 A escolha dos formatos suportados baseou-se nas características suportadas por este e na 

disponibilidade de arquivos de grafos. O primeiro fator é de crucial importância ao sistema, pois 

um arquivo pobre em informações restringe as funcionalidades do sistema. As características mí-

nimas necessárias pelas necessárias para o problema de Predição de Links são os tipos básicos 

dos dados da rede, nó e arestas, porém é interessante que haja o suporte a alguns atributos de re-

des como labels e pesos de arestas. O segundo fator poderá ditar o sucesso do programa uma vez 

que a dificuldade de conversão entre arquivos (basta observar o elevado nível de especificidade 

dos softwares que lidam com grafos) pode limitar a sua aplicabilidade. Esse critério de “populari-

dade” teve um alto peso na escolha dos formatos. Na Figura 26, identificou-se que poucos forma-

tos não aceitam as duas requisições.  
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Figura 26 - Comparação dos Tipos de Formato de Grafos 

 Os tipos escolhidos para o programa suportar foram NET Pajek e GML. O tipo NET Pa-

jek, desenvolvido em 1996, apresenta uma simplicidade e efetividade impar na representação de 

grafos. Esse formato disponibiliza a possibilidade de persistência das características básicas de 

um grafo, sendo perfeitamente ajustável ao problema de predição de links. Sua sobrevida históri-

ca acabou resultando em uma alta disponibilidade de grafos, tornando seu suporte crucial para a 

sobrevida de qualquer programa da área de redes. Hoje, ele é suportado por quase todos os pro-

gramas, incluindo o próprio Pajek, NodeXL, NetworkX e Grephi. A seguir apresenta-se o grafo 

modelado na seção Modelagem neste formato. 

*Vertices      7 

1 "1" 

2 "2" 

3 "3" 

4 "4" 

5 "5" 

6 "6" 

7 "7" 

*Arcs 

*Edges 

1      2       1 

1      3       1 

1      4       1 
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1      6       1 

2      5       1 

3      5       1 

4      5       1 

6      7       1 

  

 O formato GML, ou Graph Modeling Language, é basicamente um arquivo em formato de 

texto com uma sintaxe muito amigável ao usuário. Contém também as principais necessidades 

desse projeto, como propriedades de nós e arestas e possui alta utilização dentre os programas 

comerciais na área. Todos os arquivos utilizados nesse trabalho foram adquiridos em formato 

GML. A seguir apresenta-se o mesmo grafo anterior nesse formato. 

graph 

[ 

  node 

  [ 

    id 1 

    label "Node A" 

  ] 

  node 

  [ 

   id 2 

    label "Node B" 

  ] 

  node 

  [ 

    id 3 

    label "Node C" 

  ] 

  node 

  [ 

    id 4 

    label "Node C" 

  ] 

  node 

  [ 

    id 5 
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    label "Node C" 

  ] 

  node 

  [ 

    id 6 

    label "Node C" 

  ] 

  node 

  [ 

    id 7 

    label "Node C" 

  ] 

   edge 

  [ 

    source 1 

    target 2 

  ] 

  edge 

  [ 

    source 1 

    target 3 

  ] 

  edge 

  [ 

    source 1 

    target 4 

  ] 

  edge 

  [ 

    source 2 

    target 5 

  ] 

  edge 

  [ 

    source 3 
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    target 5 

  ] 

  edge 

  [ 

    source 4 

    target 5 

  ] 

  edge 

  [ 

    source 1 

    target 6 

  ] 

  edge 

  [ 

    source 6 

    target 7 

  ] 

]  

4.10 Visualização 

 Para a camada gráfica escolheu-se o JavaFX, pois alem de possuir algumas características 

interessantes possui total compatibilidade com a linguagem utilizada nas outras camadas. Essa 

tecnologia basicamente empacota outras já desenvolvidas anteriormente para o próprio Java, co-

mo o Swing e a AWT, porém focando na interatividade e na interface gráfica para os usuários. A 

interface Canvas em especial representa uma vantagem na parte gráfica devido a seu desempenho 

desenhando elementos na tela, uma vez que os grafos apresentam grande quantidade de nós e li-

gações a serem exibidos. 

 A tela baseou-se na separação de camadas de informações ao usuário. A primeira camada 

de visualização define um BorderPane, Figura 27, artefato que possui as regiões de usabilidade 

padrão para o usuário, sendo aqui utilizado o topo para o cabeçalho do programa, à esquerda para 

menus e botões, a central para a visualização do grafo e a direita para a saída de informações.  
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Figura 27 - Layout Padrão do Programa 

Para a visualização do grafo, contido na parte central, criou-se um tipo complexo de nós 

para fazer a representação visual do objeto contido no banco de dados e instanciou-se um objeto 

linha entre os pontos centrais dos nós. A classe que representa visualmente o vértice foi desen-

volvida para transformar as informações de posição, tamanho e texto contidas no domínio em in-

formações visuais para o usuário. Essa classe baseou-se na implementação do StackPane, que 

permite a sobreposição de artefatos visuais; o círculo que representa um nó e um texto represen-

tando seu Label, além de possuir possibilidades de atribuir propriedades que contém informações 

a respeito do posicionamento espacial do objeto. Para a criação das linhas entre os elementos pre-

cisou-se percorrer todos os nós desenhados na tela, seus vizinhos e adicionar uma linha entre os 

pontos centrais destes. Os códigos dessas implementações estão listados em anexo. 

 

5. PROGRAMA EM FUNCIONAMENTO 

A tela em funcionamento pode ser vista na Figura 28. 
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Figura 28 - IHM do Programa contendo a Rede Genérica 

6. TRABALHOS FUTUROS 

O presente projeto focou em alguns pontos do problema de predição de links, que podem 

ser ampliados futuramente. Primeiramente, utilizaram-se apenas algoritmos de predição local, o 

que beneficia o software no quesito velocidade, porém penaliza na questão da eficácia. Uma pos-

sível extensão seria estender o projeto para algoritmos de predição global, a fim de se tornar o 

programa mais versátil. Além disso, não foi utilizada nenhuma informação semântica dos grafos, 

como peso de arestas nos algoritmos preditores, podendo ser outro ponto de extensão. Finalmen-

te, a ampliação e otimização da API desenvolvida para esse software é o caminho mais indicado a 

ser seguido de imediato. 

 

7. CONCLUSÕES 

Neste relatório apresentou-se a criação de um software capaz de automatizar a predição de 

links. O trabalho também construiu um framework capaz de utilizar poucas informações contidas 

no grafo e obter uma alta eficácia. Para o desenvolvimento do programa, demonstrou-se como 

solucionar problemas associados à predição de links, em particular a persistência e a visualização 

dos dados. Em relação à persistência, demonstrou-se como resolver o problema de armazenagem 

dos dados, utilizando-se de bancos especiais para grafos e como se fazer o acesso a esses dados 

de forma mais rápida possível. Em especial para pequenas quantias de dados, demonstrou-se co-

mo realizar a computação mantendo os dados em memória, aumentando a velocidade dos cálcu-

los. A camada de visualização, por sua vez, exigiu que fossem utilizadas tecnologias gráficas re-

centes, pois a sua complexidade está na dificuldade em se exibir diferentes quantidades de dados. 

Esse problema foi resolvido utilizando duas técnicas: utilizando um componente capaz de impri-

mir na tela os grafos no seu formato original, e listando-se todos os tipos em tabelas estáticas. Pa-

ra propor uma nova métrica, utilizou-se de conhecimentos prévios a respeito da capacidade predi-

tiva de algoritmos que utilizam informações locais de maneira não supervisionada. A partir do 

entendimento de como funcionam os relacionamentos entre nós de uma rede, e de quais algorit-
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mos desempenham melhor tentando extrair essas informações, propôs-se um método que aumen-

tou significativamente a eficácia em relação a estes.  

Portanto, esse trabalho consistiu em expandir as fronteiras da predição de links, criando 

um software de fácil utilização para qualquer usuário interessado no problema, e também aumen-

tando a capacidade preditiva dos algoritmos existentes. 
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ANEXO A 

1. LINK PREDICTION API 

O problema de predição de links hoje apresenta apenas poucos algoritmos implementados 

em softwares diferentes. O código desenvolvido inclui não somente os algoritmos contidos na 

literatura, mas também um pacote que seja capaz de avaliar a efetividade desses. 

Para a implementação do algoritmo foi utilizada o padrão de projeto Strategy, do influente 

livro Design Patterns, de Erich et al. 1995. A ideia básica por trás desse padrão é que o usuário 

apenas instancie o objeto no momento de sua construção e chame a sua execução de maneira ge-

nérica. O padrão aplicado ao projeto pode ser observado no diagrama UML da Figura 29. 

 

 

Figura 29 – Padrão Strategy Aplicado ao Software. 
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Em particular para esse projeto instanciou-se todos os algoritmos previamente em uma 

enumeração para facilitar ao usuário a chamada da classe. 

 

package linkprediction.math.predictors; 
 
/** 
 * Enumeration that instantiate all local predictors. 
 */ 
public enum Algorithm { 
 CommonNeighbors(new CommonNeighbors()), AdamicAdar(new AdamicAdar()), JaccardsCoeffici-
ent(new JaccardsCoefficient()), SaltonIndex(new SaltonIndex()), LeichHolmeNewman(new LeichHol-
meNewman()), Sorensen(new Sorensen()), PreferentialAttachment( new PreferentialAttachment()), 
HubPromoted(new HubPromoted()), HubDepressed(new HubDepressed()), ResourceAllocation(new Re-
sourceAllocation()); 
 
 private Strategy instance; 
 
 private Algorithm(Strategy instance) { 
  this.instance = instance; 
 } 
 
 public Strategy getInstance() { 
  return instance; 
 } 
 
} 

 

A chamada para a utilização do algoritmo fica facilitada através dessa abordagem, pois 

cabe ao usuário apenas a escolha do algoritmo. Assim, toda a implementação e inteligência asso-

ciada à programação ficam transparentes ao usuário da API. 

 

LinkPrediction linkPrediction = new LinkPrediction(Algorithm.CommonNeighbors); 
Map<String, Double> map = linkPrediction.calculate(dataBase); 

 

Porém, o cálculo das arestas preditas exige que os dados estejam armazenados em algum 

lugar da memória para que este acesse e faça a computação. A dificuldade é   tornar a implemen-

tação genérica o suficiente para se adaptar a qualquer estrutura de dados. Nesse trabalho, por e-

xemplo, utilizaram-se duas abordagens para manter os dados, uma em memória através da API 

jgrapht e uma em banco através do framework Neo4J. Para solucionar esse problema criou-se 

uma interface em que especifica os métodos necessários para a computação da predição de links, 

e deixa ao usuário a tarefa de implementá-los.  
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Figura 30 – Abstração das Operações necessárias a Predição de Links. 

Verifica-se que para a predição de links através de informações locais basta receber a lista 

de todos os nós e poder acessar os nós que se relacionam a um determinado. Essa tarefa não será 

tão simples quando o programa for estendido a algoritmos de predição através de informações 

globais. 

 

package linkprediction.memory; 
 
import java.util.*; 
 
public interface DataBase { 
  
 /** 
  * Retrieve a list with all nodes. 
  */ 
 public List<Object> getAllNodes(); 
 
 /** 
  * Retrieve a list of all neighbors of a specified node. 
  */ 
 public List<Object> neighborsOf (String id); 
} 

 

public class CommonNeighbors implements Strategy { 
 
 @Override 
 public Map<String, Double> calculate(DataBase instance) { 
 } 
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} 

  

 Outro problema associado à predição de links é comparar os nós preditos com os armaze-

nados em memória. Assim como não se sabe a estrutura de dados utilizada pelo usuário, não se 

pode prever qual serão os tipos dos elementos do grafo. Assim, uma abordagem específica deve 

ser utilizada para esse problema, utilizando-se ferramentas avançadas do Java, como reflexão e 

coleções.  A seguir exemplifica-se a utilização de reflexão para adquirir campos de uma classe. 

 

 public static Collection<Field> getDeepDeclaredFields(Class c) { 
  if (_reflectedFields.containsKey(c)) { 
   return _reflectedFields.get(c); 
  } 
  Collection<Field> fields = new ArrayList<Field>(); 
  Class curr = c; 
 
  while (curr != null) { 
   try { 
    Field[] local = curr.getDeclaredFields(); 
 
    for (Field field : local) { 
     if (!field.isAccessible()) { 
      try { 
       field.setAccessible(true); 
      } catch (Exception ignored) { 
      } 
     } 
 
     int modifiers = field.getModifiers(); 
     if (!Modifier.isStatic(modifiers) && !fi-
eld.getName().startsWith("this$") 
       && !Modifier.isTransient(modifiers)) {  
      fields.add(field); 
     } 
    } 
   } catch (ThreadDeath t) { 
    throw t; 
   } catch (Throwable ignored) { 
   } 
 
   curr = curr.getSuperclass(); 
  } 
  _reflectedFields.put(c, fields); 
  return fields; 
 } 
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2. IMPLEMENTAÇÕES 

Common Neighbors 

1. package linkprediction.math.predictors; 
2.  
3. import java.util.HashMap; 
4. import java.util.List; 
5. import java.util.Map; 
6.  
7. import linkprediction.memory.DataBase; 
8.  
9. import org.neo4j.graphdb.Node; 
10.  
11. import util.CollectionsUtil; 
12.  
13. public class CommonNeighbors implements Strategy { 
14.  
15.  @Override 
16.  public Map<String, Double> calculate(DataBase instance) { 
17.  
18.   Map<String, Double> map = new HashMap<String, Double>(); 
19.  
20.   Iterable<Node> nodes = instance.getAllNodes(); 
21.  
22.   for (Node firstNode : nodes) { 
23.    if (firstNode.getId() == 0) { 
24.     continue; 
25.    } 
26.  
27.    List<Node> firstNodeFriends = instan-

ce.neighborsOf(String.valueOf(firstNode.getId())); 
28.  
29.    for (Node secondNode : nodes) { 
30.     if (secondNode.getId() <= firstNode.getId()) { 
31.      continue; 
32.     } 
33.  
34.     List<Node> secondNodeFriends = instan-

ce.neighborsOf(String.valueOf(secondNode.getId())); 
35.  
36.     double commonFriends = CollectionsU-

til.compare(firstNodeFriends, secondNodeFriends).size(); 
37.  
38.     map.put("(" + firstNode.getId() + " : " + secondNo-

de.getId() + ")", commonFriends); 
39.  
40.    } 
41.  
42.   } 
43.  
44.   return map; 
45.  } 
46.  
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47. } 

 

Database 

Interface 

package linkprediction.memory; 
 
import java.util.List; 
 
import org.neo4j.graphdb.Node; 
 
 
public interface DataBase { 
 
 public List<Node> getAllNodes(); 
 
 public List<Node> neighborsOf(String id); 
 
} 

Banco em Disco Rígido 

package linkprediction.memory.database; 
 
import java.io.File; 
import java.io.IOException; 
import java.util.ArrayList; 
import java.util.List; 
import java.util.Set; 
 
import linkprediction.memory.DataBase; 
import linkprediction.view.ProgramView; 
 
import org.jgrapht.Graph; 
import org.jgrapht.graph.DefaultEdge; 
import org.neo4j.graphdb.GraphDatabaseService; 
import org.neo4j.graphdb.Node; 
import org.neo4j.graphdb.Relationship; 
import org.neo4j.graphdb.RelationshipType; 
import org.neo4j.graphdb.Transaction; 
import org.neo4j.graphdb.factory.GraphDatabaseFactory; 
import org.neo4j.kernel.impl.util.FileUtils; 
import org.neo4j.tooling.GlobalGraphOperations; 
 
import util.DatabaseUtil; 
import util.GraphUtil; 
 
public class GraphDataBase implements DataBase { 
 
 private static GraphDatabaseService database; 
 
 public static int numberOfNodes = -1; 
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 public static GraphDatabaseService getInstance() { 
  if (database == null) { 
   ProgramView.write("Initializing Database ..."); 
   database = new GraphDatabaseFac-
tory().newEmbeddedDatabase(DatabaseUtil.DB_PATH); 
   registerShutdownHook(); 
  } 
 
  return database; 
 } 
 
 public GraphDataBase() { 
  clearDb(); 
 } 
 
 public void createDb(Graph<String, DefaultEdge> graph) { 
  clearDb(); 
 
  Transaction tx = getInstance().beginTx(); 
 
  try { 
 
   defineCorrectionOfIdConstant(graph.vertexSet().iterator().next()); 
 
   createNodes(graph.vertexSet()); 
 
   createRelationship(graph.edgeSet()); 
 
   createRelationshipRemovedProperty(graph.edgeSet()); 
 
   createNodesFriendsProperty(graph.vertexSet()); 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
 } 
 
 private void createRelationshipRemovedProperty(Set<DefaultEdge> edgeSet) { 
  Iterable<Relationship> relationships = GlobalGraphOperati-
ons.at(getInstance()).getAllRelationships(); 
 
  for (Relationship relationship : relationships) { 
   relationship.setProperty(DatabaseUtil.REMOVED_PROPERTY, false); 
  } 
 
 } 
 
 private void defineCorrectionOfIdConstant(String next) { 
  if (next.equals("0")) { 
   DatabaseUtil.CONSTANT_CORRECTION = 1; 
  } else { 
   DatabaseUtil.CONSTANT_CORRECTION = 0; 
  } 
 } 
 
 private void createNodesFriendsProperty(Set<String> vertexSet) { 
  System.out.println(); 
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  System.out.println("Creating Friends Property"); 
  for (String vertex : vertexSet) { 
   Node node = getNodeById(vertex); 
 
   ArrayList<Node> relationshipNodes = DatabaseU-
til.getRelationshipNodes(node); 
 
   node.setProperty(DatabaseUtil.NUMBER_FRIENDS_PROPERTY, relationshipNo-
des.size()); 
 
  } 
 } 
 
 @SuppressWarnings("unused") 
 private void createRelationship(Set<DefaultEdge> edgeSet) { 
  System.out.println(); 
  System.out.println("Creating Relationships"); 
 
  ArrayList<ArrayList<String>> edges = GraphUtil.getEdgeArray(edgeSet); 
 
  for (ArrayList<String> edge : edges) { 
   Node firstNode = getNodeById(edge.get(0)); 
   Node secondNode = getNodeById(edge.get(1)); 
 
   Relationship relationship = firstNode.createRelationshipTo(secondNode, 
RelTypes.KNOWS); 
 
  } 
 } 
 
 /** 
  * @param nodeId 
  * @return 
  */ 
 private Node getNodeById(String nodeId) { 
  return getInstance().getNodeById(Integer.parseInt(nodeId) + DatabaseU-
til.CONSTANT_CORRECTION); 
 } 
 
 @SuppressWarnings("unused") 
 private void createNodes(Set<String> vertexSet) { 
  System.out.println(); 
  System.out.println("Creating Nodes ..."); 
 
  for (String vertex : vertexSet) { 
   Node node = getInstance().createNode(); 
  } 
 } 
 
 public void shutDown() { 
  System.out.println(); 
  System.out.println("Shutting down database ..."); 
 
  getInstance().shutdown(); 
 } 
 
 private void clearDb() { 
  try { 
   FileUtils.deleteRecursively(new File(DatabaseUtil.DB_PATH)); 
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  } catch (IOException e) { 
   throw new RuntimeException(e); 
  } 
 } 
 
 private static void registerShutdownHook() { 
  Runtime.getRuntime().addShutdownHook(new Thread() { 
   @Override 
   public void run() { 
    database.shutdown(); 
   } 
  }); 
 } 
 
 private static enum RelTypes implements RelationshipType { 
  KNOWS 
 } 
 
 @Override 
 public void createNode(String label) { 
 
  Transaction tx = getInstance().beginTx(); 
 
  try { 
   Node node = getInstance().createNode(); 
   node.setProperty(DatabaseUtil.NODE_LABEL, label); 
   ProgramView.write("Creating Node: " + node.getId()); 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
 } 
 
 @Override 
 public void createRelationship(String firstNodeId, String secondNodeId) { 
 
  Transaction tx = getInstance().beginTx(); 
 
  try { 
   Node firstNode = getNodeById(firstNodeId); 
   Node secondNode = getNodeById(secondNodeId); 
 
   Relationship relationship = firstNode.createRelationshipTo(secondNode, 
RelTypes.KNOWS); 
   relationship.setProperty(DatabaseUtil.REMOVED_PROPERTY, false); 
 
   ProgramView.write("Creating Relationship: " + firstNode.getId() + " - " + 
secondNode.getId()); 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
 } 
 
 @Override 
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 public void createNodesFriendsProperty() { 
 
  Transaction tx = getInstance().beginTx(); 
 
  try { 
   Iterable<Node> nodes = GlobalGraphOperati-
ons.at(getInstance()).getAllNodes(); 
 
   for (Node node : nodes) { 
    if (node.getId() == 0) { 
     continue; 
    } 
 
    ArrayList<Node> relationshipNodes = DatabaseU-
til.getRelationshipNodes(node); 
 
    int size = relationshipNodes.size(); 
    node.setProperty(DatabaseUtil.NUMBER_FRIENDS_PROPERTY, size); 
 
    ProgramView.write("Node: " + node.getId() + " Friends: " + size); 
   } 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
 } 
 
 @Override 
 public List<Node> getAllNodes() { 
  Transaction tx = getInstance().beginTx(); 
 
  List<Node> nodes = new ArrayList<Node>(); 
 
  try { 
 
   Iterable<Node> allNodes = GlobalGraphOperati-
ons.at(getInstance()).getAllNodes(); 
 
   for (Node node : allNodes) { 
    if (node.getId() == 0) { 
     continue; 
    } 
 
    nodes.add(node); 
 
   } 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
  return nodes; 
 } 
 
 @Override 
 public List<Node> neighborsOf(String id) { 
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  Transaction tx = getInstance().beginTx(); 
 
  List<Node> friends = new ArrayList<Node>(); 
 
  Node node = getInstance().getNodeById(Long.valueOf(id)); 
 
  try { 
 
   for (Relationship relationship : node.getRelationships()) { 
 
    Node friend = relationship.getStartNode(); 
 
    if (friend.equals(node)) { 
 
     friend = relationship.getEndNode(); 
 
    } 
 
    if (friend.getId() == 0) { 
 
     continue; 
    } 
 
    friends.add(friend); 
 
   } 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
  return friends; 
 
 } 
 
 @Override 
 public void clear() { 
 
  Transaction tx = getInstance().beginTx(); 
 
  try { 
   // Deleting All Relationships 
   Iterable<Relationship> allRelationships = GlobalGraphOperati-
ons.at(getInstance()).getAllRelationships(); 
   for (Relationship relationship : allRelationships) { 
    ProgramView.write("Deleting Relationship: " + relation-
ship.getEndNode() + " " 
      + relationship.getStartNode()); 
    relationship.delete(); 
   } 
 
   // Deleting All Nodes 
   Iterable<Node> allNodes = GlobalGraphOperati-
ons.at(getInstance()).getAllNodes(); 
   for (Node node : allNodes) { 
    numberOfNodes++; 
    ProgramView.write("Deleting Nodes: " + node.getId()); 
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    node.delete(); 
   } 
 
   tx.success(); 
  } finally { 
   tx.finish(); 
  } 
 
 } 
} 

 

Banco de Dados em Memória 

package linkprediction.memory.cache; 
 
import java.util.List; 
import java.util.Set; 
 
import linkprediction.memory.DataBase; 
 
import org.jgrapht.Graph; 
import org.jgrapht.Graphs; 
import org.jgrapht.graph.DefaultEdge; 
import org.jgrapht.graph.SimpleGraph; 
 
public class CacheDataBase implements DataBase { 
 
 private static Graph<String, DefaultEdge> instance = new SimpleGraph<String, DefaultEd-
ge>(DefaultEdge.class); 
 
 public static Graph<String, DefaultEdge> getInstance() { 
  return instance; 
 } 
 
 @Override 
 public void createNode(String label) { 
  instance.addVertex(label); 
 } 
 
 @Override 
 public void createRelationship(String firstNodeId, String secondNodeId) { 
  instance.addEdge(firstNodeId, secondNodeId); 
 } 
 
 @Override 
 public void createNodesFriendsProperty() { 
  Set<String> firstNode = instance.vertexSet(); 
  Set<String> secondNode = instance.vertexSet(); 
 
  for (String first : firstNode) { 
   for (String second : secondNode) { 
    Set<DefaultEdge> edges = instance.getAllEdges(first, second); 
    int size = edges.size(); 
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    instance.addVertex(first + second); 
    instance.addEdge(first, String.valueOf(size)); 
   } 
  } 
 
 } 
 
 @Override 
 public List getAllNodes() { 
  return (List) instance.edgeSet(); 
 } 
 
 @Override 
 public List neighborsOf(String id) { 
  List neighbors = Graphs.neighborListOf(instance, id); 
  return neighbors; 
 } 
 
 @Override 
 public void clear() { 
  instance = new SimpleGraph<String, DefaultEdge>(DefaultEdge.class); 
 } 
 
} 

 


